Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tak Pan Wong is active.

Publication


Featured researches published by Tak Pan Wong.


The Journal of Neuroscience | 2007

NMDA Receptor Subunits Have Differential Roles in Mediating Excitotoxic Neuronal Death Both In Vitro and In Vivo

Yitao Liu; Tak Pan Wong; Michelle Aarts; Amanda Rooyakkers; Lidong Liu; Ted Weita Lai; Dong Chuan Wu; Jie Lu; Michael Tymianski; Ann Marie Craig; Yu Tian Wang

Well-documented experimental evidence from both in vitro and in vivo models of stroke strongly supports the critical involvement of NMDA receptor-mediated excitotoxicity in neuronal damage after stroke. Despite this, the results of clinical trials testing NMDA receptor antagonists as neuroprotectants after stroke and brain trauma have been discouraging. Here, we report that in mature cortical cultures, activation of either synaptic or extrasynaptic NR2B-containing NMDA receptors results in excitotoxicity, increasing neuronal apoptosis. In contrast, activation of either synaptic or extrasynaptic NR2A-containing NMDA receptors promotes neuronal survival and exerts a neuroprotective action against both NMDA receptor-mediated and non-NMDA receptor-mediated neuronal damage. A similar opposing action of NR2B and NR2A in mediating cell death and cell survival was also observed in an in vivo rat model of focal ischemic stroke. Moreover, we found that blocking NR2B-mediated cell death was effective in reducing infarct volume only when the receptor antagonist was given before the onset of stroke and not 4.5 h after stroke. In great contrast, activation of NR2A-mediated cell survival signaling with administration of either glycine alone or in the presence of NR2B antagonist significantly attenuated ischemic brain damage even when delivered 4.5 h after stroke onset. Together, the present work provides a molecular basis for the dual roles of NMDA receptors in promoting neuronal survival and mediating neuronal damage and suggests that selective enhancement of NR2A-containing NMDA receptor activation with glycine may constitute a promising therapy for stroke.


Neuron | 2007

LTP Inhibits LTD in the Hippocampus via Regulation of GSK3β

Stéphane Peineau; Changiz Taghibiglou; Clarrisa A. Bradley; Tak Pan Wong; Lidong Liu; Jie Lu; Edmond Lo; Dongchuan Wu; Emilia Saule; Tristan Bouschet; Paul M. Matthews; John T. R. Isaac; Zuner A. Bortolotto; Yu Tian Wang; Graham L. Collingridge

Glycogen synthase kinase-3 (GSK3) has been implicated in major neurological disorders, but its role in normal neuronal function is largely unknown. Here we show that GSK3beta mediates an interaction between two major forms of synaptic plasticity in the brain, N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) and NMDA receptor-dependent long-term depression (LTD). In rat hippocampal slices, GSK3beta inhibitors block the induction of LTD. Furthermore, the activity of GSK3beta is enhanced during LTD via activation of PP1. Conversely, following the induction of LTP, there is inhibition of GSK3beta activity. This regulation of GSK3beta during LTP involves activation of NMDA receptors and the PI3K-Akt pathway and disrupts the ability of synapses to undergo LTD for up to 1 hr. We conclude that the regulation of GSK3beta activity provides a powerful mechanism to preserve information encoded during LTP from erasure by subsequent LTD, perhaps thereby permitting the initial consolidation of learnt information.


Journal of Biological Chemistry | 2005

Neuroligins Mediate Excitatory and Inhibitory Synapse Formation INVOLVEMENT OF PSD-95 AND NEUREXIN-1β IN NEUROLIGIN-INDUCED SYNAPTIC SPECIFICITY

Joshua N. Levinson; Nadège Chéry; Kun Huang; Tak Pan Wong; Kimberly Gerrow; Rujun Kang; Oliver Prange; Yu Tian Wang; Alaa El-Husseini

The balance between excitatory and inhibitory synapses is a tightly regulated process that requires differential recruitment of proteins that dictate the specificity of newly formed contacts. However, factors that control this process remain unidentified. Here we show that members of the neuroligin (NLG) family, including NLG1, NLG2, and NLG3, drive the formation of both excitatory and inhibitory presynaptic contacts. The enrichment of endogenous NLG1 at excitatory contacts and NLG2 at inhibitory synapses supports an important in vivo role for these proteins in the development of both types of contacts. Immunocytochemical and electrophysiological analysis showed that the effects on excitatory and inhibitory synapses can be blocked by treatment with a fusion protein containing the extracellular domain of neurexin-1β. We also found that overexpression of PSD-95, a postsynaptic binding partner of NLGs, resulted in a shift in the distribution of NLG2 from inhibitory to excitatory synapses. These findings reveal a critical role for NLGs and their synaptic partners in controlling the number of inhibitory and excitatory synapses. Furthermore, relative levels of PSD-95 alter the ratio of excitatory to inhibitory synaptic contacts by sequestering members of the NLG family to excitatory synapses.


Science | 2005

Nucleus Accumbens Long-Term Depression and the Expression of Behavioral Sensitization

Karen Brebner; Tak Pan Wong; Lidong Liu; Yitao Liu; Paul Campsall; Sarah L. Gray; Lindsay Phelps; Anthony G. Phillips; Yu Tian Wang

Drug-dependent neural plasticity related to drug addiction and schizophrenia can be modeled in animals as behavioral sensitization, which is induced by repeated noncontingent or self-administration of many drugs of abuse. Molecular mechanisms that are critical for behavioral sensitization have yet to be specified. Long-term depression (LTD) of α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptor (AMPAR)–mediated synaptic transmission in the brain has been proposed as a cellular substrate for learning and memory. The expression of LTD in the nucleus accumbens (NAc) required clathrin-dependent endocytosis of postsynaptic AMPARs. NAc LTD was blocked by a dynamin-derived peptide that inhibited clathrin-mediated endocytosis or by a GluR2-derived peptide that blocked regulated AMPAR endocytosis. Systemic or intra-NAc infusion of the membrane-permeable GluR2 peptide prevented the expression of amphetamine-induced behavioral sensitization in the rat.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Hippocampal long-term depression mediates acute stress-induced spatial memory retrieval impairment

Tak Pan Wong; John G. Howland; Julie M. Robillard; Yuan Ge; Wayne Yu; Andrea K. Titterness; Karen Brebner; Lidong Liu; Joanne Weinberg; Brian R. Christie; Anthony G. Phillips; Yu Tian Wang

Acute stress impairs memory retrieval and facilitates the induction of long-term depression (LTD) in the hippocampal CA1 region of the adult rodent brain. However, whether such alterations in synaptic plasticity cause the behavioral effects of stress is not known. Here, we report that two selective inhibitors of the induction or expression of stress-enabled, N-methyl-d-aspartate receptor-dependent hippocampal LTD also block spatial memory retrieval impairments caused by acute stress. Additionally, we demonstrate that facilitating the induction of hippocampal LTD in vivo by blockade of glutamate transport mimics the behavioral effects of acute stress by impairing spatial memory retrieval. Thus, the present study demonstrates that hippocampal LTD is both necessary and sufficient to cause acute stress-induced impairment of spatial memory retrieval and provides a new perspective from which to consider the nature of cognitive deficits in disorders whose symptoms are aggravated by stress.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Hippocampal long-term depression is required for the consolidation of spatial memory

Yuan Ge; Zhifang Dong; Rosemary C. Bagot; John G. Howland; Anthony G. Phillips; Tak Pan Wong; Yu Tian Wang

Although NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) and long-term depression (LTD) of glutamatergic transmission are candidate mechanisms for long-term spatial memory, the precise contributions of LTP and LTD remain poorly understood. Here, we report that LTP and LTD in the hippocampal CA1 region of freely moving adult rats were prevented by NMDAR 2A (GluN2A) and 2B subunit (GluN2B) preferential antagonists, respectively. These results strongly suggest that NMDAR subtype preferential antagonists are appropriate tools to probe the roles of LTP and LTD in spatial memory. Using a Morris water maze task, the LTP-blocking GluN2A antagonist had no significant effect on any aspect of performance, whereas the LTD-blocking GluN2B antagonist impaired spatial memory consolidation. Moreover, similar spatial memory deficits were induced by inhibiting the expression of LTD with intrahippocampal infusion of a short peptide that specifically interferes with AMPA receptor endocytosis. Taken together, our findings support a functional requirement of hippocampal CA1 LTD in the consolidation of long-term spatial memory.


Neuron | 2006

A Critical Role for Myosin IIB in Dendritic Spine Morphology and Synaptic Function

Jubin Ryu; Lidong Liu; Tak Pan Wong; Dong Chuan Wu; Alain Burette; Richard J. Weinberg; Yu Tian Wang; Morgan Sheng

Dendritic spines show rapid motility and plastic morphology, which may mediate information storage in the brain. It is presently believed that polymerization/depolymerization of actin is the primary determinant of spine motility and morphogenesis. Here, we show that myosin IIB, a molecular motor that binds and contracts actin filaments, is essential for normal spine morphology and dynamics and represents a distinct biophysical pathway to control spine size and shape. Myosin IIB is enriched in the postsynaptic density (PSD) of neurons. Pharmacologic or genetic inhibition of myosin IIB alters protrusive motility of spines, destabilizes their classical mushroom-head morphology, and impairs excitatory synaptic transmission. Thus, the structure and function of spines is regulated by an actin-based motor in addition to the polymerization state of actin.


Neuron | 2007

Calpain-Mediated mGluR1α Truncation: A Key Step in Excitotoxicity

Wei Xu; Tak Pan Wong; Nadège Chéry; Tara Gaertner; Yu Tian Wang; Michel Baudry

Excitotoxicity mediated by glutamate receptors plays crucial roles in ischemia and other neurodegenerative diseases. Whereas overactivation of ionotropic glutamate receptors is neurotoxic, the role of metabotropic glutamate receptors (mGluRs), and especially mGluR1, remains equivocal. Here we report that activation of NMDA receptors results in calpain-mediated truncation of the C-terminal domain of mGluR1alpha at Ser(936). The truncated mGluR1alpha maintains its ability to increase cytosolic calcium while it no longer activates the neuroprotective PI(3)K-Akt signaling pathways. Full-length and truncated forms of mGluR1alpha play distinct roles in excitotoxic neuronal degeneration in cultured neurons. A fusion peptide derived from the calpain cleavage site of mGluR1alpha efficiently blocks NMDA-induced truncation of mGluR1alpha in primary neuronal cultures and exhibits neuroprotection against excitotoxicity both in vitro and in vivo. These findings shed light on the relationship between NMDA and mGluR1alpha and indicate the existence of a positive feedback regulation in excitotoxicity involving calpain and mGluR1alpha.


Journal of Biological Chemistry | 2006

Involvement of Myosin Vb in Glutamate Receptor Trafficking

Marie-France Lisé; Tak Pan Wong; Alex Trinh; Rochelle M. Hines; Lidong Liu; Rujun Kang; Dustin J. Hines; Jie Lu; James R. Goldenring; Yu Tian Wang; Alaa El-Husseini

Myosin V motors mediate cargo transport; however, the identity of neuronal molecules transported by these proteins remains unknown. Here we show that myosin Vb is expressed in several neuronal populations and associates with the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate-type glutamate receptor subunit GluR1. In developing hippocampal neurons, expression of the tail domain of myosin Vb, but not myosin Va, enhanced GluR1 accumulation in the soma and reduced its surface expression. These changes were accompanied by reduced GluR1 clustering and diminished frequency of excitatory but not inhibitory synaptic currents. Similar effects were observed upon expression of full-length myosin Vb lacking a C-terminal region required for binding to the small GTPase Rab11. In contrast, mutant myosin Vb did not change the localization of several other neurotransmitter receptors, including the glutamate receptor subunit NR1. These results reveal a novel mechanism for the transport of a specific glutamate receptor subunit in neurons mediated by a member of the myosin V family.


Neuroscience | 2003

The impact of Aβ-plaques on cortical cholinergic and non-cholinergic presynaptic boutons in alzheimer's disease-like transgenic mice

Linsen Hu; Tak Pan Wong; Sylvain L. Côté; K.F.S Bell; A.C. Cuello

A previous study in our laboratory, involving early stage, amyloid pathology in 8-month-old transgenic mice, demonstrated a selective loss of cholinergic terminals in the cerebral and hippocampal cortices of doubly transgenic (APP(K670N,M671L)+PSl(M146L)) mice, an up-regulation in the single mutant APP(K670N,M671L) mice and no detectable change in the PSl(M146L) transgenics [J Neurosci 19 (1999) 2706]. The present study investigates the impact of amyloid plaques on synaptophysin and vesicular acetylcholine transporter (VAChT) immunoreactive bouton numbers in the frontal cortex of the three transgenic mouse models previously described. When compared as a whole, the frontal cortices of transgenic and control mice show no observable differences in the densities of synaptophysin-immunoreactive boutons. An individual comparison of layer V of the frontal cortex, however, shows a significant increase in density in transgenic models. Analysis of the cholinergic system alone shows significant alterations in the VAChT-immunoreactive bouton densities as evidenced by an increased density in the single (APP(K670N,M671L)) transgenics and a decreased density in the doubly transgenics (APP(K670N,M671L)+PSl(M146L)). In investigating the impact of plaque proximity on bouton density at early stages of the amyloid pathology in our doubly (APP(K670N,M671L)+PSl(M146L)) transgenic mouse line, we observed that plaque proximity reduced cholinergic pre-synaptic bouton density by 40%, and yet increased synaptophysin-immunoreactive pre-synaptic bouton density by 9.5%. Distance from plaques (up to 60 microm) seemed to have no effect on bouton density; however a significant inverse relationship was visible between plaque size and cholinergic pre-synaptic bouton density. Finally, the number of cholinergic dystrophic neurites surrounding the truly amyloid, Thioflavin-S(+) plaque core, was disproportionately large with respect to the incidence of cholinergic boutons within the total pre-synaptic bouton population. Confocal and electron microscopic observations confirmed the preferential infiltration of dystrophic cholinergic boutons into fibrillar amyloid aggregates. We therefore hypothesize that extracellular Abeta aggregation preferentially affects cholinergic terminations prior to progression onto other neurotransmitter systems. This is supported by the observable presence of non-cholinergic sprouting, which may be representative of impending neuritic degeneration.

Collaboration


Dive into the Tak Pan Wong's collaboration.

Top Co-Authors

Avatar

Yu Tian Wang

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Yiu Chung Tse

Douglas Mental Health University Institute

View shared research outputs
Top Co-Authors

Avatar

Lidong Liu

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Rosemary C. Bagot

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patricia Boksa

Douglas Mental Health University Institute

View shared research outputs
Top Co-Authors

Avatar

Yitao Liu

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Alice S. Wong

Douglas Mental Health University Institute

View shared research outputs
Top Co-Authors

Avatar

Anthony G. Phillips

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Chelsea Cavanagh

Douglas Mental Health University Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge