Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takaharu Okada is active.

Publication


Featured researches published by Takaharu Okada.


Circulation Research | 2001

The Transient Receptor Potential Protein Homologue TRP6 Is the Essential Component of Vascular α1-Adrenoceptor–Activated Ca2+-Permeable Cation Channel

Ryuji Inoue; Takaharu Okada; Hitoshi Onoue; Yuji Hara; Shunichi Shimizu; Shinji Naitoh; Yushi Ito; Yasuo Mori

Abstract— The Drosophila transient receptor potential protein (TRP) and its mammalian homologues are thought to be Ca2+-permeable cation channels activated by G protein (Gq/11)–coupled receptors and are regarded as an interesting molecular model for the Ca2+ entry mechanisms associated with stimulated phosphoinositide turnover and store depletion. However, there is little unequivocal evidence linking mammalian TRPs with particular native functions. In this study, we have found that heterologous expression of murine TRP6 in HEK293 cells reproduces almost exactly the essential biophysical and pharmacological properties of &agr;1-adrenoceptor–activated nonselective cation channels (&agr;1-AR–NSCC) previously identified in rabbit portal vein smooth muscle. Such properties include activation by diacylglycerol; S-shaped current-voltage relationship; high divalent cation permeability; unitary conductance of 25 to 30 pS and augmentation by flufenamate and Ca2+; and blockade by Cd2+, La3+, Gd3+, SK&F96365, and amiloride. Reverse transcriptase–polymerase chain reaction and confocal laser scanning microscopy using TRP6-specific primers and antisera revealed that the level of TRP6 mRNA expression was remarkably high in both murine and rabbit portal vein smooth muscles as compared with other TRP subtypes, and the immunoreactivity to TRP6 protein was localized near the sarcolemmal region of single rabbit portal vein myocytes. Furthermore, treatment of primary cultured portal vein myocytes with TRP6 antisense oligonucleotides resulted in marked inhibition of TRP6 protein immunoreactivity as well as selective suppression of &agr;1-adrenoceptor–activated, store depletion–independent cation current and Ba2+ influx. These results strongly indicate that TRP6 is the essential component of the &agr;1-AR–NSCC, which may serve as a store depletion–independent Ca2+ entry pathway during increased sympathetic activity.


PLOS Biology | 2005

Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells.

Takaharu Okada; Mark J. Miller; Ian Parker; Matthew F. Krummel; Margaret Neighbors; Suzanne B. Hartley; Anne O'Garra; Michael D. Cahalan; Jason G. Cyster

Interactions between B and T cells are essential for most antibody responses, but the dynamics of these interactions are poorly understood. By two-photon microscopy of intact lymph nodes, we show that upon exposure to antigen, B cells migrate with directional preference toward the B-zone–T-zone boundary in a CCR7-dependent manner, through a region that exhibits a CCR7-ligand gradient. Initially the B cells show reduced motility, but after 1 d, motility is increased to approximately 9 μm/min. Antigen-engaged B cells pair with antigen-specific helper T cells for 10 to more than 60 min, whereas non-antigen-specific interactions last less than 10 min. B cell–T cell conjugates are highly dynamic and migrate extensively, being led by B cells. B cells occasionally contact more than one T cell, whereas T cells are strictly monogamous in their interactions. These findings provide evidence of lymphocyte chemotaxis in vivo, and they begin to define the spatiotemporal cellular dynamics associated with T cell–dependent antibody responses.


Nature Immunology | 2007

Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells

Tri Giang Phan; Irina L. Grigorova; Takaharu Okada; Jason G. Cyster

The mechanism of B cell–antigen encounter in lymphoid tissues is incompletely understood. It is also unclear how immune complexes are transported to follicular dendritic cells. Here, using real-time two-photon microscopy we noted rapid delivery of immune complexes through the lymph to macrophages in the lymph node subcapsular sinus. B cells captured immune complexes by a complement receptor–dependent mechanism from macrophage processes that penetrated the follicle and transported the complexes to follicular dendritic cells. Furthermore, cognate B cells captured antigen-containing immune complexes from macrophage processes and migrated to the T zone. Our findings identify macrophages lining the subcapsular sinus as an important site of B cell encounter with immune complexes and show that intrafollicular B cell migration facilitates the transport of immune complexes as well as encounters with cognate antigen.


Journal of Experimental Medicine | 2002

Chemokine Requirements for B Cell Entry to Lymph Nodes and Peyer's Patches

Takaharu Okada; Vu N. Ngo; Eric H. Ekland; Reinhold Förster; Martin Lipp; Dan R. Littman; Jason G. Cyster

B cell entry to lymph nodes and Peyers patches depends on chemokine receptor signaling, but the principal chemokine involved has not been defined. Here we show that the homing of CXCR4−/− B cells is suppressed in CCL19 (ELC)- and CCL21 (SLC)-deficient paucity of lymph node T cells mice, but not in wild-type mice. We also find that CXCR4 can contribute to T cell homing. Using intravital microscopy, we find that B cell adhesion to high endothelial venules (HEVs) is disrupted when CCR7 and CXCR4 are predesensitized. In Peyers patches, B cell entry is dependent on CXCR5 in addition to CCR7/CXCR4. CXCL12 (SDF1) is displayed broadly on HEVs, whereas CXCL13 (BLC) is found selectively on Peyers patch follicular HEVs. These findings establish the principal chemokine and chemokine receptor requirements for B cell entry to lymph nodes and Peyers patches.


Nature Medicine | 2008

TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration

Shinichiro Yamamoto; Shunichi Shimizu; Shigeki Kiyonaka; Nobuaki Takahashi; Teruaki Wajima; Yuji Hara; Takaharu Negoro; Toshihito Hiroi; Yuji Kiuchi; Takaharu Okada; Shuji Kaneko; Ingo Lange; Andrea Fleig; Reinhold Penner; Miyuki Nishi; Hiroshi Takeshima; Yasuo Mori

Reactive oxygen species (ROS) induce chemokines responsible for the recruitment of inflammatory cells to sites of injury or infection. Here we show that the plasma membrane Ca2+-permeable channel TRPM2 controls ROS-induced chemokine production in monocytes. In human U937 monocytes, hydrogen peroxide (H2O2) evokes Ca2+ influx through TRPM2 to activate Ca2+-dependent tyrosine kinase Pyk2 and amplify Erk signaling via Ras GTPase. This elicits nuclear translocation of nuclear factor-κB essential for the production of the chemokine interleukin-8 (CXCL8). In monocytes from Trpm2-deficient mice, H2O2-induced Ca2+ influx and production of the macrophage inflammatory protein-2 (CXCL2), the mouse CXCL8 functional homolog, were impaired. In the dextran sulfate sodium-induced colitis inflammation model, CXCL2 expression, neutrophil infiltration and ulceration were attenuated by Trpm2 disruption. Thus, TRPM2 Ca2+ influx controls the ROS-induced signaling cascade responsible for chemokine production, which aggravates inflammation. We propose functional inhibition of TRPM2 channels as a new therapeutic strategy for treating inflammatory diseases.


Immunity | 2008

S1P1 receptor signaling overrides retention mediated by Gαi-coupled receptors to promote T cell egress

Trung Pham; Takaharu Okada; Mehrdad Matloubian; Charles G. Lo; Jason G. Cyster

The mechanism by which sphingosine-1-phosphate receptor-1 (S1P1) acts to promote lymphocyte egress from lymphoid organs is not defined. Here, we showed that CCR7-deficient T cells left lymph nodes more rapidly than wild-type cells did, whereas CCR7-overexpressing cells were retained for longer. After treatment with FTY720, an agonist that causes downmodulation of lymphocyte S1P1, CCR7-deficient T cells were less effectively retained than wild-type T cells. Moreover, treatment with pertussis toxin to inactivate signaling via G alpha i-protein-coupled receptors restored egress competence to S1P1-deficient lymphocytes. We also found that T cell accumulation in lymph node cortical sinusoids required intrinsic S1P1 expression and was antagonized by CCR7. These findings suggest a model where S1P1 acts in the lymphocyte to promote lymph node egress by overcoming retention signals mediated by CCR7 and additional G alpha i-coupled receptors. Furthermore, by simultaneously upregulating S1P1 and downregulating CCR7, T cells that have divided multiple times switch to a state favoring egress over retention.


Journal of Experimental Medicine | 2002

Transient Receptor Potential 1 Regulates Capacitative Ca2+ Entry and Ca2+ Release from Endoplasmic Reticulum in B Lymphocytes

Yasuo Mori; Minoru Wakamori; Tomoya Miyakawa; Meredith C. Hermosura; Yuji Hara; Motohiro Nishida; Kenzo Hirose; Akiko Mizushima; Mari Kurosaki; Emiko Mori; Kumiko Gotoh; Takaharu Okada; Andrea Fleig; Reinhold Penner; Masamitsu Iino; Tomohiro Kurosaki

Capacitative Ca2+ entry (CCE) activated by release/depletion of Ca2+ from internal stores represents a major Ca2+ influx mechanism in lymphocytes and other nonexcitable cells. Despite the importance of CCE in antigen-mediated lymphocyte activation, molecular components constituting this mechanism remain elusive. Here we demonstrate that genetic disruption of transient receptor potential (TRP)1 significantly attenuates both Ca2+ release-activated Ca2+ currents and inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release from endoplasmic reticulum (ER) in DT40 B cells. As a consequence, B cell antigen receptor–mediated Ca2+ oscillations and NF-AT activation are reduced in TRP1-deficient cells. Thus, our results suggest that CCE channels, whose formation involves TRP1 as an important component, modulate IP3 receptor function, thereby enhancing functional coupling between the ER and plasma membrane in transduction of intracellular Ca2+ signaling in B lymphocytes.


Journal of Immunology | 2007

CC Chemokine Receptor 7 Contributes to Gi-Dependent T Cell Motility in the Lymph Node

Takaharu Okada; Jason G. Cyster

Naive T cells migrate extensively within lymph node (LN) T zones to scan for Ag-bearing dendritic cells. However, the extracellular signals controlling T cell motility in LNs are not well defined. In this study, by real-time imaging of LNs, we show that the inhibition of Gi signaling in T cells severely impairs their migration. The chemokine CCL21, a ligand of CCR7, strongly induces chemokinesis in vitro, and T cell motility in LNs from CCR7 ligand-deficient plt/plt mice was reduced. CCR7-deficient T cells in wild-type LNs showed a similar reduction in motility, and antagonism of CXCR4 function did not further decrease their motility. The effect of CCR7 or CCR7-ligand deficiency could account for ∼40% of the Gi-dependent motility. These results reveal a role for CCR7 in promoting T cell migration within lymphoid organ T zones, and they suggest the additional involvement of novel Gi-coupled receptors in promoting T cell motility at these sites.


Journal of Immunology | 2011

Cutting Edge: Distinct Waves of BCL6 Expression during T Follicular Helper Cell Development

Dirk Baumjohann; Takaharu Okada; K. Mark Ansel

T follicular helper (TFH) cells are central to the development and regulation of T cell-dependent humoral immune responses. The transcriptional repressor BCL6 is required for TFH responses, but the kinetics of BCL6 protein expression in activated CD4+ T cells have not been established. We measured BCL6 expression during TFH cell development at the single-cell level using intracellular staining and YFP-BCL6 fusion protein reporter mice. BCL6 was immediately upregulated in all dividing T cells during dendritic cell–T cell interactions. A second wave of early BCL6 expression coincided with the induction of CXCR5, resulting in a distinct and stable TFH cell population. Cognate B cells were not required for the induction of BCL6, but supported the expansion of TFH cells. These data suggest that BCL6 participates in very early events in TFH cell development, and that repeated encounters with APCs reinforce BCL6 expression, thereby establishing the TFH cell phenotype.


Nature Immunology | 2009

Cortical sinus probing, S1P1-dependent entry and flow-based capture of egressing T cells.

Irina L. Grigorova; Susan R. Schwab; Tri Giang Phan; Trung Pham; Takaharu Okada; Jason G. Cyster

The cellular dynamics of the egress of lymphocytes from lymph nodes are poorly defined. Here we visualized the branched organization of lymph node cortical sinuses and found that after entry, some T cells were retained, whereas others returned to the parenchyma. T cells deficient in sphingosine 1-phosphate receptor type 1 probed the sinus surface but failed to enter the sinuses. In some sinuses, T cells became rounded and moved unidirectionally. T cells traveled from cortical sinuses into macrophage-rich sinus areas. Many T cells flowed from medullary sinuses into the subcapsular space. We propose a multistep model of lymph node egress in which cortical sinus probing is followed by entry dependent on sphingosine 1-phosphate receptor type 1, capture of cells in a sinus region with flow, and transport to medullary sinuses and the efferent lymph.

Collaboration


Dive into the Takaharu Okada's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masato Kubo

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masahiro Kitano

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge