Takako Kawanami
Fukuoka University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Takako Kawanami.
Diabetes | 2014
Takashi Nomiyama; Takako Kawanami; Shinichiro Irie; Yuriko Hamaguchi; Yuichi Terawaki; Kunitaka Murase; Yoko Tsutsumi; Ryoko Nagaishi; Makito Tanabe; Hidetaka Morinaga; Tomoko Tanaka; Makio Mizoguchi; Kazuki Nabeshima; Masatoshi Tanaka; Toshihiko Yanase
Recently, pleiotropic benefits of incretin therapy beyond glycemic control have been reported. Although cancer is one of the main causes of death in diabetic patients, few reports describe the anticancer effects of incretin. Here, we examined the effect of the incretin drug exendin (Ex)-4, a GLP-1 receptor (GLP-1R) agonist, on prostate cancer. In human prostate cancer tissue obtained from patients after they had undergone radical prostatectomy, GLP-1R expression colocalized with P504S, a marker of prostate cancer. In in vitro experiments, Ex-4 significantly decreased the proliferation of the prostate cancer cell lines LNCap, PC3, and DU145, but not that of ALVA-41. This antiproliferative effect depended on GLP-1R expression. In accordance with the abundant expression of GLP-1R in LNCap cells, a GLP-1R antagonist or GLP-1R knockdown with small interfering RNA abolished the inhibitory effect of Ex-4 on cell proliferation. Although Ex-4 had no effect on either androgen receptor activation or apoptosis, it decreased extracellular signal–regulated kinase (ERK)-mitogen-activated protein kinase (MAPK) phosphorylation in LNCap cells. Importantly, Ex-4 attenuated in vivo prostate cancer growth induced by transplantation of LNCap cells into athymic mice and significantly reduced the tumor expression of P504S, Ki67, and phosphorylated ERK-MAPK. These data suggest that Ex-4 attenuates prostate cancer growth through the inhibition of ERK-MAPK activation.
Cardiovascular Diabetology | 2014
Yuichi Terawaki; Takashi Nomiyama; Takako Kawanami; Yuriko Hamaguchi; Hiroyuki Takahashi; Tomoko Tanaka; Kunitaka Murase; Ryoko Nagaishi; Makito Tanabe; Toshihiko Yanase
BackgroundRecently, glucagon-like peptide-1 (GLP-1)-based therapy, including dipeptidyl peptidase-4 (DPP-4) inhibitors and GLP-1 receptor agonists, has emerged as one of the most popular anti-diabetic therapies. Furthermore, GLP-1-based therapy has attracted increased attention not only for its glucose-lowering ability, but also for its potential as a tissue-protective therapy. In this study, we investigated the vascular-protective effect of the DPP-4 inhibitor, linagliptin, using vascular smooth muscle cells (VSMCs).MethodsSix-week-old male C57BL/6 mice were divided into control (n =19) and linagliptin (3 mg/kg/day, n =20) treated groups. Endothelial denudation injuries were induced in the femoral artery at 8 weeks of age, followed by evaluation of neointima formation at 12 weeks. To evaluate cell proliferation of rat aortic smooth muscle cells, a bromodeoxyuridine (BrdU) incorporation assay was performed.ResultsLinagliptin treatment reduced vascular injury-induced neointima formation, compared with controls (p <0.05). In these non-diabetic mice, the body weight and blood glucose levels did not change after treatment with linagliptin. Linagliptin caused an approximately 1.5-fold increase in serum active GLP-1 concentration, compared with controls. In addition, the vascular injury-induced increase in the oxidative stress marker, urinary 8-OHdG, was attenuated by linagliptin treatment, though this attenuation was not statistically significant (p =0.064). Moreover, linagliptin did not change the serum stromal cell-derived factor-1α (SDF-1α) or the serum platelet-derived growth factor (PDGF) concentration. However, linagliptin significantly reduced in vitro VSMC proliferation.ConclusionLinagliptin attenuates neointima formation after vascular injury and VSMC proliferation beyond the glucose-lowering effect.
PLOS ONE | 2015
Yoko Tsutsumi; Takashi Nomiyama; Takako Kawanami; Yuriko Hamaguchi; Yuichi Terawaki; Tomoko Tanaka; Kunitaka Murase; Ryoko Motonaga; Makito Tanabe; Toshihiko Yanase
Introduction Recently, the pleiotropic benefits of incretin-based therapy have been reported. We have previously reported that Exendin–4, a glucagon-like peptide–1 (GLP–1) receptor agonist, attenuates prostate cancer growth. Metformin is known for its anti-cancer effect. Here, we examined the anti-cancer effect of Exendin–4 and metformin using a prostate cancer model. Methods Prostate cancer cells were treated with Exendin–4 and/or metformin. Cell proliferation was quantified by growth curves and 5-bromo–2′-deoxyuridine (BrdU) assay. TUNEL assay and AMP-activated protein kinase (AMPK) phosphorylation were examined in LNCaP cells. For in vivo experiments, LNCaP cells were transplanted subcutaneously into the flank region of athymic mice, which were then treated with Exendin–4 and/or metformin. TUNEL assay and immunohistochemistry were performed on tumors. Results Exendin–4 and metformin additively decreased the growth curve, but not the migration, of prostate cancer cells. The BrdU assay revealed that both Exendin–4 and metformin significantly decreased prostate cancer cell proliferation. Furthermore, metformin, but not Exendin–4, activated AMPK and induced apoptosis in LNCaP cells. The anti-proliferative effect of metformin was abolished by inhibition or knock down of AMPK. In vivo, Exendin–4 and metformin significantly decreased tumor size, and further significant tumor size reduction was observed after combined treatment. Immunohistochemistry on tumors revealed that the P504S and Ki67 expression decreased by Exendin–4 and/or metformin, and that metformin increased phospho-AMPK expression and the apoptotic cell number. Conclusion These data suggest that Exendin–4 and metformin attenuated prostate cancer growth by inhibiting proliferation, and that metformin inhibited proliferation by inducing apoptosis. Combined treatment with Exendin–4 and metformin attenuated prostate cancer growth more than separate treatments.
Reproductive Medicine and Biology | 2017
Tashihiko Yanase; Takako Kawanami; Tomoko Tanaka; Makito Tanabe; Takashi Nomiyama
A high prevalence of cancers in metabolic disorders, like metabolic syndrome (MetS) and type 2 diabetes mellitus (T2DM), recently has been noted, including prostate cancer (PC), which is androgen‐sensitive. However, the pathological relationship among testosterone and insulin and insulin‐like growth factor (IGF)‐1 signaling in relation to MetS and T2DM with PC remains unclear.
Endocrinology | 2017
Chikayo Iwaya; Takashi Nomiyama; Shiho komatsu; Takako Kawanami; Yoko Tsutsumi; Yuriko Hamaguchi; Tsuyoshi Horikawa; Yasuteru Yoshinaga; Shin-ichi Yamashita; Tomoko Tanaka; Yuichi Terawaki; Makito Tanabe; Kazuki Nabeshima; Akinori Iwasaki; Toshihiko Yanase
Incretin therapies have received much attention because of their tissue-protective effects, which extend beyond those associated with glycemic control. Cancer is a primary cause of death in patients who have diabetes mellitus. We previously reported antiprostate cancer effects of the glucagonlike peptide-1 (GLP-1) receptor (GLP-1R) agonist exendin-4 (Ex-4). Breast cancer is one of the most common cancers in female patients who have type 2 diabetes mellitus and obesity. Thus, we examined whether GLP-1 action could attenuate breast cancer. GLP-1R was expressed in human breast cancer tissue and MCF-7, MDA-MB-231, and KPL-1 cell lines. We found that 0.1 to 10 nM Ex-4 significantly decreased the number of breast cancer cells in a dose-dependent manner. Although Ex-4 did not induce apoptosis, it attenuated breast cancer cell proliferation significantly and dose-dependently. However, the dipeptidyl peptidase-4 inhibitor linagliptin did not affect breast cancer cell proliferation. When MCF-7 cells were transplanted into athymic mice, Ex-4 decreased MCF-7 tumor size in vivo. Ki67 immunohistochemistry revealed that breast cancer cell proliferation was significantly reduced in tumors extracted from Ex-4-treated mice. In MCF-7 cells, Ex-4 significantly inhibited nuclear factor κB (NF-κB ) nuclear translocation and target gene expression. Furthermore, Ex-4 decreased both Akt and IκB phosphorylation. These results suggest that GLP-1 could attenuate breast cancer cell proliferation via activation of GLP-1R and subsequent inhibition of NF-κB activation.
PLOS ONE | 2016
Takashi Fukuda; Tomoko Tanaka; Yuriko Hamaguchi; Takako Kawanami; Takashi Nomiyama; Toshihiko Yanase
Aryl hydrocarbon receptor interacting protein (AIP) is thought to be a tumor suppressor gene, as indicated by a mutational analysis of pituitary somatotroph adenomas. However, the physiological significance of AIP inactivation in somatotroph cells remains unclear. Using CRISPR/Cas9, we identified a GH3 cell clone (termed GH3-FTY) in which Aip was genetically disrupted, and subsequently investigated its character with respect to growth hormone (Gh) synthesis and proliferation. Compared with GH3, GH3-FTY cells showed remarkably increased Gh production and a slight increase in cell proliferation. Gh-induced Stat3 phosphorylation is known to be a mechanism of Gh oversecretion in GH3. Interestingly, phosphorylated-Stat3 expression in GH3-FTY cells was increased more compared with GH3 cells, suggesting a stronger drive for this mechanism in GH3-FTY. The phenotypes of GH3-FTY concerning Gh overproduction, cell proliferation, and increased Stat3 phosphorylation were significantly reversed by the exogenous expression of Aip. GH3-FTY cells were less sensitive to somatostatin than GH3 cells in the suppression of cell proliferation, which might be associated with the reduced expression of somatostatin receptor type 2. GH3-FTY xenografts in BALB/c nude mice (GH3-FTY mice) formed more mitotic somatotroph tumors than GH3 xenografts (GH3 mice), as also evidenced by increased Ki67 scores. GH3-FTY mice were also much larger and had significantly higher plasma Gh levels than GH3 mice. Furthermore, GH3-FTY mice showed relative insulin resistance compared with GH3 mice. In conclusion, we established a somatotroph cell line, GH3-FTY, which possessed prominent Gh secretion and mitotic features associated with the disruption of Aip.
Diabetes Research and Clinical Practice | 2016
Shiho komatsu; Takashi Nomiyama; Chikayo Iwaya; Yasuteru Yoshinaga; Shin-ichi Yamashita; Takako Kawanami; Yuriko Hamaguchi; Tomoko Tanaka; Akinori Iwasaki; Toshihiko Yanase
Endocrinology | 2018
Takako Kawanami; Tomoko Tanaka; Yuriko Hamaguchi; Takashi Nomiyama; Hajime Nawata; Tosihiko Yanase
Diabetes | 2018
Toru Shigeoka; Takashi Nomiyama; Takako Kawanami; Yuriko Hamaguchi; Tomoko Tanaka; Toshihiko Yanase
Diabetes | 2018
Chikayo Iwaya; Takashi Nomiyama; Takako Kawanami; Yuriko Hamaguchi; Tomoko Tanaka; Toshihiko Yanase