Yuichi Terawaki
Fukuoka University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuichi Terawaki.
Diabetes Research and Clinical Practice | 2012
Takashi Nomiyama; Yuko Akehi; Hiromasa Takenoshita; Ryoko Nagaishi; Yuichi Terawaki; Hisahiro Nagasako; Tadachika Kudo; Takehiko Kodera; Kunihisa Kobayashi; Hidenori Urata; Toshihiko Yanase
Patients’ characteristics related to efficacy of sitagliptin were examined in 345 Japanese individuals with inadequately controlled type 2 diabetes whose baseline characteristics are shown in Table 1. Patients received sitagliptin 50 mg/day for 24 weeks in addition to their existing diet therapy and other medications. We treated patients with sitagliptin at a dose of 50 mg, the standard dose in Japan, because a previous study reported that HbA1c reduction by sitagliptin was not different when the drug was given at this dose versus at doses 50 mg in Japanese patients with type 2 diabetes [1]. The primary endpoint
Diabetes | 2014
Takashi Nomiyama; Takako Kawanami; Shinichiro Irie; Yuriko Hamaguchi; Yuichi Terawaki; Kunitaka Murase; Yoko Tsutsumi; Ryoko Nagaishi; Makito Tanabe; Hidetaka Morinaga; Tomoko Tanaka; Makio Mizoguchi; Kazuki Nabeshima; Masatoshi Tanaka; Toshihiko Yanase
Recently, pleiotropic benefits of incretin therapy beyond glycemic control have been reported. Although cancer is one of the main causes of death in diabetic patients, few reports describe the anticancer effects of incretin. Here, we examined the effect of the incretin drug exendin (Ex)-4, a GLP-1 receptor (GLP-1R) agonist, on prostate cancer. In human prostate cancer tissue obtained from patients after they had undergone radical prostatectomy, GLP-1R expression colocalized with P504S, a marker of prostate cancer. In in vitro experiments, Ex-4 significantly decreased the proliferation of the prostate cancer cell lines LNCap, PC3, and DU145, but not that of ALVA-41. This antiproliferative effect depended on GLP-1R expression. In accordance with the abundant expression of GLP-1R in LNCap cells, a GLP-1R antagonist or GLP-1R knockdown with small interfering RNA abolished the inhibitory effect of Ex-4 on cell proliferation. Although Ex-4 had no effect on either androgen receptor activation or apoptosis, it decreased extracellular signal–regulated kinase (ERK)-mitogen-activated protein kinase (MAPK) phosphorylation in LNCap cells. Importantly, Ex-4 attenuated in vivo prostate cancer growth induced by transplantation of LNCap cells into athymic mice and significantly reduced the tumor expression of P504S, Ki67, and phosphorylated ERK-MAPK. These data suggest that Ex-4 attenuates prostate cancer growth through the inhibition of ERK-MAPK activation.
Cardiovascular Diabetology | 2014
Yuichi Terawaki; Takashi Nomiyama; Takako Kawanami; Yuriko Hamaguchi; Hiroyuki Takahashi; Tomoko Tanaka; Kunitaka Murase; Ryoko Nagaishi; Makito Tanabe; Toshihiko Yanase
BackgroundRecently, glucagon-like peptide-1 (GLP-1)-based therapy, including dipeptidyl peptidase-4 (DPP-4) inhibitors and GLP-1 receptor agonists, has emerged as one of the most popular anti-diabetic therapies. Furthermore, GLP-1-based therapy has attracted increased attention not only for its glucose-lowering ability, but also for its potential as a tissue-protective therapy. In this study, we investigated the vascular-protective effect of the DPP-4 inhibitor, linagliptin, using vascular smooth muscle cells (VSMCs).MethodsSix-week-old male C57BL/6 mice were divided into control (n =19) and linagliptin (3 mg/kg/day, n =20) treated groups. Endothelial denudation injuries were induced in the femoral artery at 8 weeks of age, followed by evaluation of neointima formation at 12 weeks. To evaluate cell proliferation of rat aortic smooth muscle cells, a bromodeoxyuridine (BrdU) incorporation assay was performed.ResultsLinagliptin treatment reduced vascular injury-induced neointima formation, compared with controls (p <0.05). In these non-diabetic mice, the body weight and blood glucose levels did not change after treatment with linagliptin. Linagliptin caused an approximately 1.5-fold increase in serum active GLP-1 concentration, compared with controls. In addition, the vascular injury-induced increase in the oxidative stress marker, urinary 8-OHdG, was attenuated by linagliptin treatment, though this attenuation was not statistically significant (p =0.064). Moreover, linagliptin did not change the serum stromal cell-derived factor-1α (SDF-1α) or the serum platelet-derived growth factor (PDGF) concentration. However, linagliptin significantly reduced in vitro VSMC proliferation.ConclusionLinagliptin attenuates neointima formation after vascular injury and VSMC proliferation beyond the glucose-lowering effect.
Diabetology & Metabolic Syndrome | 2013
Yuichi Terawaki; Takashi Nomiyama; Yuko Akehi; Hiromasa Takenoshita; Ryoko Nagaishi; Yoko Tsutsumi; Kunitaka Murase; Hisahiro Nagasako; Nobuya Hamanoue; Kaoru Sugimoto; Ayako Takada; Kenji Ito; Yasuhiro Abe; Yoshie Sasatomi; Satoru Ogahara; Hitoshi Nakashima; Takao Saito; Toshihiko Yanase
BackgroundAlthough incretin therapy is clinically available in patients with type 2 diabetes undergoing hemodialysis, no study has yet examined whether incretin therapy is capable of maintaining glycemic control in this group of patients when switched from insulin therapy. In this study, we examined the efficacy of incretin therapy in patients with insulin-treated type 2 diabetes undergoing hemodialysis.MethodsTen type 2 diabetic patients undergoing hemodialysis received daily 0.3 mg liraglutide, 50 mg vildagliptin, and 6.25 mg alogliptin switched from insulin therapy on both the day of hemodialysis and the non-hemodialysis day. Blood glucose level was monitored by continuous glucose monitoring. After blood glucose control by insulin, patients were treated with three types of incretin therapy in a randomized crossover manner, with continuous glucose monitoring performed for each treatment.ResultsDuring treatment with incretin therapies, severe hyperglycemia and ketosis were not observed in any patients. Maximum blood glucose and mean blood glucose on the day of hemodialysis were significantly lower after treatment with liraglutide compared with treatment with alogliptin (p < 0.05), but not with vildagliptin. The standard deviation value, a marker of glucose fluctuation, on the non-hemodialysis day was significantly lower after treatment with liraglutide compared with treatment with insulin and alogliptin (p < 0.05), but not with vildagliptin. Furthermore, the duration of hyperglycemia was significantly shorter after treatment with liraglutide on both the hemodialysis and non-hemodialysis days compared with treatment with alogliptin (p < 0.05), but not with vildagliptin.ConclusionsThe data presented here suggest that patients with type 2 diabetes undergoing hemodialysis and insulin therapy could be treated with incretin therapy in some cases.
Journal of Diabetes Investigation | 2017
Makito Tanabe; Ryoko Motonaga; Yuichi Terawaki; Takashi Nomiyama; Toshihiko Yanase
In treatment algorithms of type 2 diabetes mellitus in Western countries, biguanides are recommended as first‐line agents. In Japan, various oral hypoglycemic agents (OHAs) are available, but prescription patterns are unclear.
PLOS ONE | 2015
Yoko Tsutsumi; Takashi Nomiyama; Takako Kawanami; Yuriko Hamaguchi; Yuichi Terawaki; Tomoko Tanaka; Kunitaka Murase; Ryoko Motonaga; Makito Tanabe; Toshihiko Yanase
Introduction Recently, the pleiotropic benefits of incretin-based therapy have been reported. We have previously reported that Exendin–4, a glucagon-like peptide–1 (GLP–1) receptor agonist, attenuates prostate cancer growth. Metformin is known for its anti-cancer effect. Here, we examined the anti-cancer effect of Exendin–4 and metformin using a prostate cancer model. Methods Prostate cancer cells were treated with Exendin–4 and/or metformin. Cell proliferation was quantified by growth curves and 5-bromo–2′-deoxyuridine (BrdU) assay. TUNEL assay and AMP-activated protein kinase (AMPK) phosphorylation were examined in LNCaP cells. For in vivo experiments, LNCaP cells were transplanted subcutaneously into the flank region of athymic mice, which were then treated with Exendin–4 and/or metformin. TUNEL assay and immunohistochemistry were performed on tumors. Results Exendin–4 and metformin additively decreased the growth curve, but not the migration, of prostate cancer cells. The BrdU assay revealed that both Exendin–4 and metformin significantly decreased prostate cancer cell proliferation. Furthermore, metformin, but not Exendin–4, activated AMPK and induced apoptosis in LNCaP cells. The anti-proliferative effect of metformin was abolished by inhibition or knock down of AMPK. In vivo, Exendin–4 and metformin significantly decreased tumor size, and further significant tumor size reduction was observed after combined treatment. Immunohistochemistry on tumors revealed that the P504S and Ki67 expression decreased by Exendin–4 and/or metformin, and that metformin increased phospho-AMPK expression and the apoptotic cell number. Conclusion These data suggest that Exendin–4 and metformin attenuated prostate cancer growth by inhibiting proliferation, and that metformin inhibited proliferation by inducing apoptosis. Combined treatment with Exendin–4 and metformin attenuated prostate cancer growth more than separate treatments.
Meta Gene | 2014
Kumiko Ohkubo; Tomoe Matsuzaki; Makiko Yuki; Ryoko Yoshida; Yuichi Terawaki; Akira Maeyama; Hironobu Kawashima; Junko Ono; Toshihiko Yanase; Akira Matsunaga
The clinical phenotypes of patients with Bartter syndrome type III sometimes closely resemble those of Gitelman syndrome. We report a patient with mild, adult-onset symptoms, such as muscular weakness and fatigue, who showed hypokalemic metabolic alkalosis, elevated renin–aldosterone levels with normal blood pressure, hypocalciuria and hypomagnesemia. She was also suffering from chondrocalcinosis. A diuretic test with furosemide and thiazide showed a good response to furosemide, but little response to thiazide. Although the clinical findings and diuretic tests predicted that the patient had Gitelman syndrome, genetic analysis found no mutation in SLC12A3. However, a novel missense mutation, p.L647F in CLCNKB, which is located in the CBS domain at the C-terminus of ClC-Kb, was discovered. Therefore, gene analyses of CLCNKB and SLC12A3 might be necessary to elucidate the precise etiology of the salt-losing tubulopathies regardless of the results of diuretic tests.
Endocrinology | 2017
Chikayo Iwaya; Takashi Nomiyama; Shiho komatsu; Takako Kawanami; Yoko Tsutsumi; Yuriko Hamaguchi; Tsuyoshi Horikawa; Yasuteru Yoshinaga; Shin-ichi Yamashita; Tomoko Tanaka; Yuichi Terawaki; Makito Tanabe; Kazuki Nabeshima; Akinori Iwasaki; Toshihiko Yanase
Incretin therapies have received much attention because of their tissue-protective effects, which extend beyond those associated with glycemic control. Cancer is a primary cause of death in patients who have diabetes mellitus. We previously reported antiprostate cancer effects of the glucagonlike peptide-1 (GLP-1) receptor (GLP-1R) agonist exendin-4 (Ex-4). Breast cancer is one of the most common cancers in female patients who have type 2 diabetes mellitus and obesity. Thus, we examined whether GLP-1 action could attenuate breast cancer. GLP-1R was expressed in human breast cancer tissue and MCF-7, MDA-MB-231, and KPL-1 cell lines. We found that 0.1 to 10 nM Ex-4 significantly decreased the number of breast cancer cells in a dose-dependent manner. Although Ex-4 did not induce apoptosis, it attenuated breast cancer cell proliferation significantly and dose-dependently. However, the dipeptidyl peptidase-4 inhibitor linagliptin did not affect breast cancer cell proliferation. When MCF-7 cells were transplanted into athymic mice, Ex-4 decreased MCF-7 tumor size in vivo. Ki67 immunohistochemistry revealed that breast cancer cell proliferation was significantly reduced in tumors extracted from Ex-4-treated mice. In MCF-7 cells, Ex-4 significantly inhibited nuclear factor κB (NF-κB ) nuclear translocation and target gene expression. Furthermore, Ex-4 decreased both Akt and IκB phosphorylation. These results suggest that GLP-1 could attenuate breast cancer cell proliferation via activation of GLP-1R and subsequent inhibition of NF-κB activation.
Journal of Atherosclerosis and Thrombosis | 2018
Hiroyuki Takahashi; Takashi Nomiyama; Yuichi Terawaki; Takako Kawanami; Yuriko Hamaguchi; Tomoko Tanaka; Makito Tanabe; Dennis Bruemmer; Toshihiko Yanase
Aims: Recently, incretin therapy has attracted increasing attention because of its potential use in tissue-protective therapy. Neuron-derived orphan receptor 1 (NOR1) is a nuclear orphan receptor that regulates vascular smooth muscle cell (VSMC) proliferation. In the present study, we investigated the vascular-protective effect of Exendin-4 (Ex-4), a glucagon-like peptide-1 receptor agonist, by inhibiting NOR1 expression in VSMCs. Methods: We classified 7-week-old male 129X1/SvJ mice into control group and Ex-4 low- and high-dose-treated groups fed normal or high-fat diets, respectively. Endothelial denudation injuries were induced in the femoral artery at 8 weeks of age, followed by the evaluation of neointima formation at 12 weeks of age. To evaluate VSMC proliferation, bromodeoxyuridine incorporation assay and cell cycle distribution analysis were performed. NOR1 and cell cycle regulators were detected using immunohistochemistry, western blotting, quantitative reverse-transcription polymerase chain reaction, and luciferase assays. Results: Ex-4 treatment reduced vascular injury-induced neointima formation compared with controls. In terms of VSMCs occupying the neointima area, VSMC numbers and NOR1-expressing proliferative cells were significantly decreased by Ex-4 in a dose-dependent manner in both diabetic and non-diabetic mice. In vitro experiments using primary cultured VSMCs revealed that Ex-4 attenuated NOR1 expression by reducing extracellular signal-regulated kinase-mitogen-activated protein kinase and cAMP-responsive element-binding protein phosphorylations. Furthermore, in the cell cycle distribution analysis, serum-induced G1–S phase entry was significantly attenuated by Ex-4 treatment of VSMCs by inhibiting the induction of S-phase kinase-associated protein 2. Conclusion: Ex-4 attenuates neointima formation after vascular injury and VSMC proliferation possibly by inhibiting NOR1 expression.
Diabetology & Metabolic Syndrome | 2015
Yuichi Terawaki; Takashi Nomiyama; Hiroyuki Takahashi; Yoko Tsutsumi; Kunitaka Murase; Ryoko Nagaishi; Makito Tanabe; Tadachika Kudo; Kunihisa Kobayashi; Tetsuhiko Yasuno; Hitoshi Nakashima; Toshihiko Yanase