Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takako Sasaki is active.

Publication


Featured researches published by Takako Sasaki.


Journal of Biological Chemistry | 2015

Fibulin-4 E57K Knock-in Mice Recapitulate Cutaneous, Vascular and Skeletal Defects of Recessive Cutis Laxa 1B with both Elastic Fiber and Collagen Fibril Abnormalities

Olga Igoucheva; Vitali Alexeev; Carmen M. Halabi; Sheila M. Adams; Ivan Stoilov; Takako Sasaki; Machiko Arita; Adele Donahue; Robert P. Mecham; David E. Birk

Background: Mutations in fibulin-4 cause autosomal recessive cutis laxa 1B, characterized by loose skin with vascular, lung, and skeletal abnormalities. Results: A mouse strain carrying a recurrent fibulin-4 missense mutation was generated and characterized. Conclusion: Mutant mice recapitulate the complete clinical features of the disease. Significance: The study provides the first evidence that fibulin-4 regulates collagen fibrillogenesis. Fibulin-4 is an extracellular matrix protein essential for elastic fiber formation. Frameshift and missense mutations in the fibulin-4 gene (EFEMP2/FBLN4) cause autosomal recessive cutis laxa (ARCL) 1B, characterized by loose skin, aortic aneurysm, arterial tortuosity, lung emphysema, and skeletal abnormalities. Homozygous missense mutations in FBLN4 are a prevalent cause of ARCL 1B. Here we generated a knock-in mouse strain bearing a recurrent fibulin-4 E57K homozygous missense mutation. The mutant mice survived into adulthood and displayed abnormalities in multiple organ systems, including loose skin, bent forelimb, aortic aneurysm, tortuous artery, and pulmonary emphysema. Biochemical studies of dermal fibroblasts showed that fibulin-4 E57K mutant protein was produced but was prone to dimer formation and inefficiently secreted, thereby triggering an endoplasmic reticulum stress response. Immunohistochemistry detected a low level of fibulin-4 E57K protein in the knock-in skin along with altered expression of selected elastic fiber components. Processing of a precursor to mature lysyl oxidase, an enzyme involved in cross-linking of elastin and collagen, was compromised. The knock-in skin had a reduced level of desmosine, an elastin-specific cross-link compound, and ultrastructurally abnormal elastic fibers. Surprisingly, structurally aberrant collagen fibrils and altered organization into fibers were characteristics of the knock-in dermis and forelimb tendons. Type I collagen extracted from the knock-in skin had decreased amounts of covalent intermolecular cross-links, which could contribute to the collagen fibril abnormalities. Our studies provide the first evidence that fibulin-4 plays a role in regulating collagen fibril assembly and offer a preclinical platform for developing treatments for ARCL 1B.


Journal of Biological Chemistry | 2016

Molecular Mechanism Responsible for Fibronectin-controlled Alterations in Matrix Stiffness in Advanced Chronic Liver Fibrogenesis.

Ayumi Iwasaki; Keiko Sakai; Kei Moriya; Takako Sasaki; Douglas R. Keene; Riaz Akhtar; Takayoshi Miyazono; Satoshi Yasumura; Masatoshi Watanabe; Shin Morishita; Takao Sakai

Fibrosis is characterized by extracellular matrix (ECM) remodeling and stiffening. However, the functional contribution of tissue stiffening to noncancer pathogenesis remains largely unknown. Fibronectin (Fn) is an ECM glycoprotein substantially expressed during tissue repair. Here we show in advanced chronic liver fibrogenesis using a mouse model lacking Fn that, unexpectedly, Fn-null livers lead to more extensive liver cirrhosis, which is accompanied by increased liver matrix stiffness and deteriorated hepatic functions. Furthermore, Fn-null livers exhibit more myofibroblast phenotypes and accumulate highly disorganized/diffuse collagenous ECM networks composed of thinner and significantly increased number of collagen fibrils during advanced chronic liver damage. Mechanistically, mutant livers show elevated local TGF-β activity and lysyl oxidase expressions. A significant amount of active lysyl oxidase is released in Fn-null hepatic stellate cells in response to TGF-β1 through canonical and noncanonical Smad such as PI3 kinase-mediated pathways. TGF-β1-induced collagen fibril stiffness in Fn-null hepatic stellate cells is significantly higher compared with wild-type cells. Inhibition of lysyl oxidase significantly reduces collagen fibril stiffness, and treatment of Fn recovers collagen fibril stiffness to wild-type levels. Thus, our findings indicate an indispensable role for Fn in chronic liver fibrosis/cirrhosis in negatively regulating TGF-β bioavailability, which in turn modulates ECM remodeling and stiffening and consequently preserves adult organ functions. Furthermore, this regulatory mechanism by Fn could be translated for a potential therapeutic target in a broader variety of chronic fibrotic diseases.


Physiological Reports | 2015

Perlecan deficiency causes endothelial dysfunction by reducing the expression of endothelial nitric oxide synthase

Risa Nonaka; Takafumi Iesaki; Susana de Vega; Hiroyuki Daida; Takao Okada; Takako Sasaki; Eri Arikawa-Hirasawa

Perlecan is a major heparan sulfate proteoglycan found in the subendothelial extracellular matrix of the vascular wall. The aim of this study was to investigate the role of perlecan in the regulation of vascular tone. A previously developed conditional perlecan‐deficient mouse model was used to measure changes in the isometric force of isolated aortic rings. The vessels were first precontracted with phenylephrine, and then treated with increasing concentrations of vasorelaxants. Endothelium‐dependent relaxation, elicited by acetylcholine, was significantly reduced in the perlecan‐deficient aortas, whereas endothelium‐independent relaxation caused by the exogenous nitric oxide donor sodium nitroprusside remained well preserved. The expression of the endothelial nitric oxide synthase (eNOS) gene, detected by real‐time polymerase chain reaction, was significantly decreased in the perlecan‐deficient aortas. The expression of eNOS protein detected using Western blotting was also significantly decreased in the perlecan‐deficient aortas. We examined the role of perlecan in eNOS gene expression by creating perlecan knockdown human aortic endothelial cells using small interfering RNA (siRNA) for perlecan. Perlecan gene expression was significantly reduced in the perlecan siRNA‐treated cells, resulting in a significant decrease in eNOS gene expression. Perlecan deficiency induced endothelial dysfunction, as indicated by a reduction in endothelium‐dependent relaxation due, at least partly, to a reduction in eNOS expression. These findings suggest that perlecan plays a role in the activation of eNOS gene expression during normal growth processes.


Laboratory Investigation | 2016

Fibulin-2 is essential for angiotensin II-induced myocardial fibrosis mediated by transforming growth factor (TGF)- β

Shaukat Khan; Hailong Dong; Jennifer Joyce; Takako Sasaki; Takeshi Tsuda

Fibrosis is an ominous pathological process in failing myocardium, but its pathogenesis is poorly understood. We recently reported that loss of an extracellular matrix (ECM) protein, fibulin-2, protected against ventricular dysfunction after myocardial infarction (MI) in association with absence of activation of transforming growth factor (TGF)-β signaling and suppressed upregulation of ECM protein expression during myocardial remodeling. Here we investigated the role of fibulin-2 in the development of myocardial hypertrophy and fibrosis induced by continuous pressor-dosage of angiotensin II (Ang II) infusion. Both wild type (WT) and fibulin-2 null (Fbln2KO) mice developed comparable hypertension and myocardial hypertrophy by Ang II infusion. However, myocardial fibrosis with significant upregulation of collagen type I and III mRNA was only seen in WT but not in Fbln2KO mice.Transforming growth factor (TGF)-β1 mRNA and its downstream signal, Smad2, were significantly upregulated in WT by Ang II, whereas there were no Ang II-induced changes in Flbn2KO, suggesting fibulin-2 is necessary for Ang II-induced TGF-β signaling that induces myocardial fibrosis. To test whether fibulin-2 is sufficient for Ang II-induced TGF-β upregulation, isolated Flbn2KO cardiac fibroblasts were treated with Ang II after transfecting with fibulin-2 expression vector or pretreating with recombinant fibulin-2 protein. Ang II-induced TGF-β signaling in Fbln2KO cells was partially rescued by exogenous fibulin-2, suggesting that fibulin-2 is required and probably sufficient for Ang II-induced TGF-β activation. Smad2 phosphorylation was induced just by adding recombinant fibulin-2 to KO cells, suggesting that extracellular interaction between fibulin-2 and latent TGF-β triggered initial TGF-β activation. Our study indicates that Ang II cannot induce TGF-β activation without fibulin-2 and that fibulin-2 has an essential role in Ang II-induced TGF-β signaling and subsequent myocardial fibrosis. Fibulin-2 can be considered as a critical regulator of TGF-β that induces myocardial fibrosis.


Development | 2016

Thyroid follicle development requires Smad1/Smad5- and endothelial-dependent basement membrane assembly.

Mylah Villacorte; Anne-Sophie Delmarcelle; Manon Lernoux; Mahé Bouquet; Pascale Lemoine; Jennifer Bolsée; Lieve Umans; Susana Lopes; Patrick Van Der Smissen; Takako Sasaki; Guido T. Bommer; Patrick Henriet; Samuel Refetoff; Frédéric P. Lemaigre; An Zwijsen; Pierre J. Courtoy; Christophe E. Pierreux

Thyroid follicles, the functional units of the thyroid gland, are delineated by a monolayer of thyrocytes resting on a continuous basement membrane. The developmental mechanisms of folliculogenesis, whereby follicles are formed by the reorganization of a non-structured mass of non-polarized epithelial cells, are largely unknown. Here we show that assembly of the epithelial basement membrane is crucial for folliculogenesis and is controlled by endothelial cell invasion and by BMP-Smad signaling in thyrocytes. Thyroid-specific Smad1 and Smad5 double-knockout (Smad1/5dKO) mice displayed growth retardation, hypothyroidism and defective follicular architecture. In Smad1/5dKO embryonic thyroids, epithelial cells remained associated in large clusters and formed small follicles. Although similar follicular defects are found in Vegfa knockout (VegfaKO) thyroids, Smad1/5dKO thyroids had normal endothelial cell density yet impaired endothelial differentiation. Interestingly, both VegfaKO and Smad1/5dKO thyroids displayed impaired basement membrane assembly. Furthermore, conditioned medium (CM) from embryonic endothelial progenitor cells (eEPCs) rescued the folliculogenesis defects of both Smad1/5dKO and VegfaKO thyroids. Laminin α1, β1 and γ1, abundantly released by eEPCs into CM, were crucial for folliculogenesis. Thus, epithelial Smad signaling and endothelial cell invasion promote folliculogenesis via assembly of the basement membrane. Summary: Epithelial BMP-Smad1/5 signaling and associated endothelial cells are required for reorganization of the thyroid progenitor cell mass into mature follicles via the assembly of a basement membrane.


Matrix Biology | 2016

Loss of fibulin-4 results in abnormal collagen fibril assembly in bone, caused by impaired lysyl oxidase processing and collagen cross-linking

Takako Sasaki; Reinout Stoop; Takao Sakai; Andreas Hess; Rainer Deutzmann; Ursula Schlötzer-Schrehardt; Klaus von der Mark

The extracellular matrix protein fibulin-4 has been shown to be indispensable for elastic fiber assembly, but there is also evidence from human mutations that it is involved in controlling skeletal development and bone stability. Fibulin-4 mutations were identified in patients suffering from vascular abnormality and/or cutis laxa, and some of these patients exhibited bone fragility, arachnodactyly and joint laxity. In order to elucidate the role of fibulin-4 in bone structure and skeletal development, we analyzed structural changes in skeletal tissues of Fbln4(-/-) mice. Immunostaining confirmed that fibulin-4 is highly expressed in cartilage, bone, ligaments and tendons. No morphological abnormalities were found in the skeleton of Fbln4(-/-) mice as compared to wild type littermates except forelimb contractures as well as unusually thick collagen fibrils. Furthermore, fibulin-4 deficiency caused enhanced susceptibility of bone collagen for acid extraction, consistent with significantly reduced lysylpyridinoline and hydroxylysylpyridinoline cross-links in bone. In accordance with that, the amount of lysyl oxidase in long bones and calvaria was strongly decreased and proteolytic activation of lysyl oxidase was reduced in fibulin-4 deficient osteoblasts, while addition of recombinant fibulin-4 rescued the activation. The finding suggested that fibulin-4 is important for the proteolytic activation of lysyl oxidase which has a pivotal role in cross-linking of collagen and elastin.


Matrix Biology | 2016

Functional consequence of fibulin-4 missense mutations associated with vascular and skeletal abnormalities and cutis laxa.

Takako Sasaki; Franz-Georg Hanisch; Rainer Deutzmann; Lynn Y. Sakai; Tetsushi Sakuma; Tatsuo Miyamoto; Takashi Yamamoto; Ewald Hannappel; Harald Lanig; Klaus von der Mark

Fibulin-4 is a 60kDa calcium binding glycoprotein that has an important role in development and integrity of extracellular matrices. It interacts with elastin, fibrillin-1 and collagen IV as well as with lysyl oxidases and is involved in elastogenesis and cross-link formation. To date, several mutations in the fibulin-4 gene (FBLN4/EFEMP2) are known in patients whose major symptoms are vascular deformities, aneurysm, cutis laxa, joint laxity, or arachnodactyly. The pathogenetic mechanisms how these mutations translate into the clinical phenotype are, however, poorly understood. In order to elucidate these mechanisms, we expressed fibulin-4 mutants recombinantly in HEK293 cells, purified the proteins in native forms and analyzed alterations in protein synthesis, secretion, matrix assembly, and interaction with other proteins in relation to wild type fibulin-4. Our studies show that different mutations affect these properties in multiple ways, resulting in fibulin-4 deficiency and/or impaired ability to form elastic fibers. The substitutions E126K and C267Y impaired secretion of the protein, but not mRNA synthesis. Furthermore, the E126K mutant showed less resistance to proteases, reduced binding to collagen IV and fibrillin-1, as well as to LTBP1s and LTBP4s. The A397T mutation introduced an extra O-glycosylation site and deleted binding to LTBP1s. We show that fibulin-4 binds stronger than fibulin-3 and -5 to LTBP1s, 3, and 4s, and to the lysyl oxidases LOX and LOXL1; the binding of fibulin-4 to the LOX propeptide was strongly reduced by the mutation E57K. These findings show that different mutations in the fibulin-4 gene result in different molecular defects affecting secretion rates, protein stability, LOX-induced cross-linking, or binding to other ECM components and molecules of the TGF-β pathway, and thus illustrate the complex role of fibulin-4 in connective tissue assembly.


Scientific Reports | 2017

Fibulin-4 deposition requires EMILIN-1 in the extracellular matrix of osteoblasts

Alvise Schiavinato; Douglas R. Keene; Thomas Imhof; Roberto Doliana; Takako Sasaki; Gerhard Sengle

Tissue microenvironments formed by extracellular matrix networks play an important role in regulating tissue structure and function. Extracellular microfibrillar networks composed of fibrillins and their associated ligands such as LTBPs, fibulins, and EMILINs are of particular interest in this regard since they provide a specialized cellular microenvironment guiding proper morphology and functional behavior of specialized cell types. To understand how cellular microenvironments composed of intricate microfibrillar networks influence cell fate decisions in a contextual manner, more information about the spatiotemporal localization, deposition, and function of their components is required. By employing confocal immunofluorescence and electron microscopy we investigated the localization and extracellular matrix deposition of EMILIN-1 and -2 in tissues of the skeletal system such as cartilage and bone as well as in in vitro cultures of osteoblasts. We found that upon RNAi mediated depletion of EMILIN-1 in primary calvarial osteoblasts and MC3T3-E1 cells only fibulin-4 matrix deposition was lost while other fibulin family members or LTBPs remained unaffected. Immunoprecipitation and ELISA-style binding assays confirmed a direct interaction between EMILIN-1 and fibulin-4. Our data suggest a new function for EMILIN-1 which implies the guidance of linear fibulin-4 matrix deposition and thereby fibulin-4 fiber formation.


Cell and Tissue Research | 2016

Forelimb contractures and abnormal tendon collagen fibrillogenesis in fibulin-4 null mice

Dessislava Markova; Te-Cheng Pan; Rui-Zhu Zhang; Guiyun Zhang; Takako Sasaki; Machiko Arita; David E. Birk

Fibulin-4 is an extracellular matrix glycoprotein essential for elastic fiber formation. Mice deficient in fibulin-4 die perinatally because of severe pulmonary and vascular defects associated with the lack of intact elastic fibers. Patients with fibulin-4 mutations demonstrate similar defects, and a significant number die shortly after birth or in early childhood from cardiopulmonary failure. The patients also demonstrate skeletal and other systemic connective tissue abnormalities, including joint laxity and flexion contractures of the wrist. A fibulin-4 null mouse strain was generated and used to analyze the roles of fibulin-4 in tendon fibrillogenesis. This mouse model displayed bilateral forelimb contractures, in addition to pulmonary and cardiovascular defects. The forelimb and hindlimb tendons exhibited disruption in collagen fibrillogenesis in the absence of fibulin-4 as analyzed by transmission electron microscopy. Fewer fibrils were assembled, and fibrils were disorganized compared with wild-type controls. The organization of developing tenocytes and compartmentalization of the extracellular space was also disrupted. Fibulin-4 was co-localized with fibrillin-1 and fibrillin-2 in limb tendons by using immunofluorescence microscopy. Thus, fibulin-4 seems to play a role in regulating tendon collagen fibrillogenesis, in addition to its essential function in elastogenesis.


Journal of Biological Chemistry | 2018

Transcription factor scleraxis vitally contributes to progenitor lineage direction in wound healing of adult tendon in mice

Tomoya Sakabe; Keiko Sakai; Toru Maeda; Ataru Sunaga; Nao Furuta; Ronen Schweitzer; Takako Sasaki; Takao Sakai

Tendon is a dense connective tissue that transmits high mechanical forces from skeletal muscle to bone. The transcription factor scleraxis (Scx) is a highly specific marker of both precursor and mature tendon cells (tenocytes). Mice lacking scx exhibit a specific and virtually complete loss of tendons during development. However, the functional contribution of Scx to wound healing in adult tendon has not yet been fully characterized. Here, using ScxGFP-tracking and loss-of-function systems, we show in an adult mouse model of Achilles tendon injury that paratenon cells, representing a stem cell antigen-1 (Sca-1)–positive and Scx-negative progenitor subpopulation, display Scx induction, migrate to the wound site, and produce extracellular matrix (ECM) to bridge the defect, whereas resident tenocytes exhibit a delayed response. Scx induction in the progenitors is initiated by transforming growth factor β (TGF-β) signaling. scx-deficient mice had migration of Sca-1–positive progenitor cell to the lesion site but impaired ECM assembly to bridge the defect. Mechanistically, scx-null progenitors displayed higher chondrogenic potential with up-regulation of SRY-box 9 (Sox9) coactivator PPAR-γ coactivator-1α (PGC-1α) in vitro, and knock-in analysis revealed that forced expression of full-length scx significantly inhibited Sox9 expression. Accordingly, scx-null wounds formed cartilage-like tissues that developed ectopic ossification. Our findings indicate a critical role of Scx in a progenitor-cell lineage in wound healing of adult mouse tendon. These progenitor cells could represent targets in strategies to facilitate tendon repair. We propose that this lineage-regulatory mechanism in tissue progenitors could apply to a broader set of tissues or biological systems in the body.

Collaboration


Dive into the Takako Sasaki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David E. Birk

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Douglas R. Keene

Shriners Hospitals for Children

View shared research outputs
Top Co-Authors

Avatar

Machiko Arita

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge