Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takao Kasuga is active.

Publication


Featured researches published by Takao Kasuga.


PLOS ONE | 2012

A Novel Biochemical Route for Fuels and Chemicals Production from Cellulosic Biomass

Zhiliang Fan; Weihua Wu; Amanda Hildebrand; Takao Kasuga; Ruifu Zhang; Xiaochao Xiong

The conventional biochemical platform featuring enzymatic hydrolysis involves five key steps: pretreatment, cellulase production, enzymatic hydrolysis, fermentation, and product recovery. Sugars are produced as reactive intermediates for subsequent fermentation to fuels and chemicals. Herein, an alternative biochemical route is proposed. Pretreatment, enzymatic hydrolysis and cellulase production is consolidated into one single step, referred to as consolidated aerobic processing, and sugar aldonates are produced as the reactive intermediates for biofuels production by fermentation. In this study, we demonstrate the viability of consolidation of the enzymatic hydrolysis and cellulase production steps in the new route using Neurospora crassa as the model microorganism and the conversion of cellulose to ethanol as the model system. We intended to prove the two hypotheses: 1) cellulose can be directed to produce cellobionate by reducing β-glucosidase production and by enhancing cellobiose dehydrogenase production; and 2) both of the two hydrolysis products of cellobionate—glucose and gluconate—can be used as carbon sources for ethanol and other chemical production. Our results showed that knocking out multiple copies of β-glucosidase genes led to cellobionate production from cellulose, without jeopardizing the cellulose hydrolysis rate. Simulating cellobiose dehydrogenase over-expression by addition of exogenous cellobiose dehydrogenase led to more cellobionate production. Both of the two hydrolysis products of cellobionate: glucose and gluconate can be used by Escherichia coli KO 11 for efficient ethanol production. They were utilized simultaneously in glucose and gluconate co-fermentation. Gluconate was used even faster than glucose. The results support the viability of the two hypotheses that lay the foundation for the proposed new route.


PLOS ONE | 2012

Phenotypic Diversification Is Associated with Host- Induced Transposon Derepression in the Sudden Oak Death Pathogen Phytophthora ramorum

Takao Kasuga; Melina Kozanitas; Mai Bui; D. Hüberli; David M. Rizzo; Matteo Garbelotto

The oomycete pathogen Phytophthora ramorum is responsible for sudden oak death (SOD) in California coastal forests. P. ramorum is a generalist pathogen with over 100 known host species. Three or four closely related genotypes of P. ramorum (from a single lineage) were originally introduced in California forests and the pathogen reproduces clonally. Because of this the genetic diversity of P. ramorum is extremely low in Californian forests. However, P. ramorum shows diverse phenotypic variation in colony morphology, colony senescence, and virulence. In this study, we show that phenotypic variation among isolates is associated with the host species from which the microbe was originally cultured. Microarray global mRNA profiling detected derepression of transposable elements (TEs) and down-regulation of crinkler effector homologs (CRNs) in the majority of isolates originating from coast live oak (Quercus agrifolia), but this expression pattern was not observed in isolates from California bay laurel (Umbellularia californica). In some instances, oak and bay laurel isolates originating from the same geographic location had identical genotypes based on multilocus simples sequence repeat (SSR) marker analysis but had different phenotypes. Expression levels of the two marker genes analyzed by quantitative reverse transcription PCR were correlated with originating host species, but not with multilocus genotypes. Because oak is a nontransmissive dead-end host for P. ramorum, our observations are congruent with an epi-transposon hypothesis; that is, physiological stress is triggered on P. ramorum while colonizing oak stems and disrupts epigenetic silencing of TEs. This then results in TE reactivation and possibly genome diversification without significant epidemiological consequences. We propose the P. ramorum-oak host system in California forests as an ad hoc model for epi-transposon mediated diversification.


Protein Expression and Purification | 2011

Expression of cellobiose dehydrogenase from Neurospora crassa in Pichia pastoris and its purification and characterization

Ruifu Zhang; Zhiliang Fan; Takao Kasuga

A gene encoding cellobiose dehydrogenase (CDH) from Neurospora crassa strain FGSC 2489 has been cloned and expressed in the heterologous host Pichia pastoris, under the control of the AOX1 methanol inducible promoter. Recombinant CDH without the native signal sequence and fused with a His(6)-tag (rNC-CDH1) was successfully expressed and secreted. rNC-CDH1 was produced at the level of 652 IU/L after 2 days of cultivation in the induction medium. The His(6)-tagged rNC-CDH1 was purified through a one-step Ni-NTA affinity column under non-denaturing conditions. The purified rNC-CDH1 has a CDH activity of 745 1IU/L (0.89 mg protein/mL), with a specific CDH activity of 8.37 IU/mg. The purity of the enzyme was examined by SDS-PAGE, and a single band corresponding to a molecular weight of about 120 kDa was observed. Activity staining confirmed the CDH activity of the protein band. The purified rNC-CDH1 has maximum CDH activity at pH 4.5, and a rather broad temperature optimum of 25-70°C. Kinetic analysis showed cellobiose and cellooligosaccharides are the best substrates for rNC-CDH1. The K(m) value of the rNC-CDH1 for cellooligosaccharide increases with the elongation of glucosyl units. k(cat) remains relatively constant when the chain length changes.


Trends in Microbiology | 2013

Epigenetics and the evolution of virulence

Takao Kasuga; Mark Gijzen

A feature of pathogenic and invasive organisms is their adaptability when confronted with host and environmental challenges. Recent studies have demonstrated that plant pathogens rely on epigenetic processes for this purpose. Epiallelic variation of effector genes that results in evasion of host immunity is one emerging phenomenon. Another is the epigenetically induced reprogramming and diversification of transcriptional patterns by de-repression of transposable elements. These observations indicate that epigenetic control of gene expression provides a versatile means of generating phenotypic diversity that is adaptable and heritable across generations.


Enzyme and Microbial Technology | 2013

Direct cellobiose production from cellulose using sextuple beta-glucosidase gene deletion Neurospora crassa mutants.

Weihua Wu; Amanda Hildebrand; Takao Kasuga; Xiaochao Xiong; Zhiliang Fan

Direct cellobiose production from cellulose by a genetically modified fungus-Neurospora crassa, was explored in this study. A library of N. crassa sextuple beta-glucosidase (bgl) gene deletion strains was constructed. Various concentrations of cellobiose were detected in the culture broth of the N. crassa sextuple beta-glucosidase (bgl) gene deletion strains when grown on Avicel without exogenous cellulase addition. The sextuple bgl deletion strains expressing one of the three basally transcribed bgl genes are the best cellobiose producers. For most sextuple strains, the multiple bgl gene deletion has no negative effect on the production of other cellulases. The induction of major endoglucanases and exoglucanases on Avicel in most of the sextuple bgl deletions strains was as fast as or faster than that of the wild type, except for strain F4. The best cellobiose producing strain, F5, produced 7.7 g/L of cellobiose from 20 g/L of Avicel in four days and utilized the Avicel as fast as did the wild type (even in the presence of high cellobiose concentration). The cellobiose yield from cellulose was about 48.3%.


Journal of Biotechnology | 2013

Engineering Escherichia coli for improved ethanol production from gluconate.

Amanda Hildebrand; Theresa Schlacta; Rebeccah Warmack; Takao Kasuga; Zhiliang Fan

We report on engineering Escherichia coli to produce ethanol at high yield from gluconic acid (gluconate). Knocking out genes encoding for the competing pathways (l-lactate dehydrogenase and pyruvate formate lyase A) in E. coli KO11 eliminated lactate production, lowered the carbon flow toward acetate production, and improved the ethanol yield from 87.5% to 97.5% of the theoretical maximum, while the growth rate of the mutant strain was about 70% of the wild type. The corresponding genetic modifications led to a small improvement of ethanol yield from 101.5% to 106.0% on glucose. Deletion of the pyruvate dehydrogenase gene (pdh) alone improved the ethanol yield from 87.5% to 90.4% when gluconate was a substrate. The growth rate of the mutant strain was identical to that of the wild type. The corresponding genetic modification led to no improvements on ethanol yield on glucose.


Journal of Microbiological Methods | 2013

Efficient sequential repetitive gene deletions in Neurospora crassa employing a self-excising β-recombinase/six cassette

Edyta Szewczyk; Takao Kasuga; Zhiliang Fan

Despite its long-standing history as a model organism, Neurospora crassa has limited tools for repetitive gene deletions utilizing recyclable self-excising marker systems. Here we describe, for the first time, the functionality of a bacterial recombination system employing β-recombinase acting on six recognition sequences (β-rec/six) in N. crassa, which allowed repetitive site-specific gene deletion and marker recycling. We report generating the mus-51 deletion strain using this system, recycling the marker cassette, and subsequently deleting the global transcriptional regulator gene cre-1.


Infection, Genetics and Evolution | 2013

PRP8 intein in cryptic species of Histoplasma capsulatum: evolution and phylogeny.

Raquel C. Theodoro; Christina M. Scheel; Mary E. Brandt; Takao Kasuga; Eduardo Bagagli

The PRP8 intein is the most widespread intein among the Kingdom Fungi. This genetic element occurs within the prp8 gene, and is transcribed and translated simultaneously with the gene. After translation, the intein excises itself from the Prp8 protein by an autocatalytic splicing reaction, subsequently joining the N and C terminals of the host protein, which retains its functional conformation. Besides the splicing domain, some PRP8 inteins also have a homing endonuclease (HE) domain which, if functional, makes the intein a mobile element capable of becoming fixed in a population. This work aimed to study (1) The occurrence of this intein in Histoplasma capsulatum isolates (n=99) belonging to different cryptic species collected in diverse geographical locations, and (2) The functionality of the endonuclease domains of H. capsulatum PRP8 inteins and their phylogenetic relationship among the cryptic species. Our results suggest that the PRP8 intein is fixed in H. capsulatum populations and that an admixture or a probable ancestral polymorphism of the PRP8 intein sequences is responsible for the apparent paraphyletic pattern of the LAmA clade which, in the intein phylogeny, also encompasses sequences from LAmB isolates. The PRP8 intein sequences clearly separate the different cryptic species, and may serve as an additional molecular typing tool, as previously proposed for other fungi genus, such as Cryptococcus and Paracoccidioides.


Archives of Microbiology | 2013

Location and contribution of individual β-glucosidase from Neurospora crassa to total β-glucosidase activity

Weihua Wu; Takao Kasuga; Xiaochao Xiong; Di Ma; Zhiliang Fan

Abstract This study investigated the cellular location and the contribution of individual β-glucosidase (BGL) to total BGL activity in Neurospora crassa. Among the seven bgl genes, bgl3, bgl5, and bgl7 were transcribed at basal levels, whereas bgl1, bgl2, bgl4, and bgl6 were significantly up-regulated when the wild-type strain was induced with cellulose (Avicel). BGL1 and BGL4 were found to be contributors to intracellular BGL activity, whereas the activities of BGL2 and BGL6 were mainly extracellular. Sextuple bgl deletion strains expressing one of the three basally transcribed bgls did not produce any detectable BGL activity when they were grown on Avicel. BGL6 is the major contributor to overall BGL activity, and most of its activity resides cell-bound. The sextuple bgl deletion strain containing only bgl6 utilized cellobiose at a rate similar to that of the wild type, while the strain with only bgl6 deleted utilized cellobiose much slower than that of the wild type.


PLOS ONE | 2015

Production of Cellobionate from Cellulose Using an Engineered Neurospora crassa Strain with Laccase and Redox Mediator Addition

Amanda Hildebrand; Takao Kasuga; Zhiliang Fan

We report a novel production process for cellobionic acid from cellulose using an engineered fungal strain with the exogenous addition of laccase and a redox mediator. A previously engineered strain of Neurospora crassa (F5∆ace-1∆cre-1∆ndvB) was shown to produce cellobionate directly from cellulose without the addition of exogenous cellulases. Specifically, N. crassa produces cellulases, which hydrolyze cellulose to cellobiose, and cellobiose dehydrogenase (CDH), which oxidizes cellobiose to cellobionate. However, the conversion of cellobiose to cellobionate is limited by the slow re-oxidation of CDH by molecular oxygen. By adding low concentrations of laccase and a redox mediator to the fermentation, CDH can be efficiently oxidized by the redox mediator, with in-situ re-oxidation of the redox mediator by laccase. The conversion of cellulose to cellobionate was optimized by evaluating pH, buffer, and laccase and redox mediator addition time on the yield of cellobionate. Mass and material balances were performed, and the use of the native N. crassa laccase in such a conversion system was evaluated against the exogenous Pleurotus ostreatus laccase. This paper describes a working concept of cellobionate production from cellulose using the CDH-ATBS-laccase system in a fermentation system.

Collaboration


Dive into the Takao Kasuga's collaboration.

Top Co-Authors

Avatar

Zhiliang Fan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Rizzo

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weihua Wu

University of California

View shared research outputs
Top Co-Authors

Avatar

Mai Bui

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Edyta Szewczyk

University of California

View shared research outputs
Top Co-Authors

Avatar

Kamyar Aram

University of California

View shared research outputs
Top Co-Authors

Avatar

Ruifu Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar

Xiaochao Xiong

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge