Zhiliang Fan
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhiliang Fan.
PLOS ONE | 2012
Zhiliang Fan; Weihua Wu; Amanda Hildebrand; Takao Kasuga; Ruifu Zhang; Xiaochao Xiong
The conventional biochemical platform featuring enzymatic hydrolysis involves five key steps: pretreatment, cellulase production, enzymatic hydrolysis, fermentation, and product recovery. Sugars are produced as reactive intermediates for subsequent fermentation to fuels and chemicals. Herein, an alternative biochemical route is proposed. Pretreatment, enzymatic hydrolysis and cellulase production is consolidated into one single step, referred to as consolidated aerobic processing, and sugar aldonates are produced as the reactive intermediates for biofuels production by fermentation. In this study, we demonstrate the viability of consolidation of the enzymatic hydrolysis and cellulase production steps in the new route using Neurospora crassa as the model microorganism and the conversion of cellulose to ethanol as the model system. We intended to prove the two hypotheses: 1) cellulose can be directed to produce cellobionate by reducing β-glucosidase production and by enhancing cellobiose dehydrogenase production; and 2) both of the two hydrolysis products of cellobionate—glucose and gluconate—can be used as carbon sources for ethanol and other chemical production. Our results showed that knocking out multiple copies of β-glucosidase genes led to cellobionate production from cellulose, without jeopardizing the cellulose hydrolysis rate. Simulating cellobiose dehydrogenase over-expression by addition of exogenous cellobiose dehydrogenase led to more cellobionate production. Both of the two hydrolysis products of cellobionate: glucose and gluconate can be used by Escherichia coli KO 11 for efficient ethanol production. They were utilized simultaneously in glucose and gluconate co-fermentation. Gluconate was used even faster than glucose. The results support the viability of the two hypotheses that lay the foundation for the proposed new route.
Protein Expression and Purification | 2011
Ruifu Zhang; Zhiliang Fan; Takao Kasuga
A gene encoding cellobiose dehydrogenase (CDH) from Neurospora crassa strain FGSC 2489 has been cloned and expressed in the heterologous host Pichia pastoris, under the control of the AOX1 methanol inducible promoter. Recombinant CDH without the native signal sequence and fused with a His(6)-tag (rNC-CDH1) was successfully expressed and secreted. rNC-CDH1 was produced at the level of 652 IU/L after 2 days of cultivation in the induction medium. The His(6)-tagged rNC-CDH1 was purified through a one-step Ni-NTA affinity column under non-denaturing conditions. The purified rNC-CDH1 has a CDH activity of 745 1IU/L (0.89 mg protein/mL), with a specific CDH activity of 8.37 IU/mg. The purity of the enzyme was examined by SDS-PAGE, and a single band corresponding to a molecular weight of about 120 kDa was observed. Activity staining confirmed the CDH activity of the protein band. The purified rNC-CDH1 has maximum CDH activity at pH 4.5, and a rather broad temperature optimum of 25-70°C. Kinetic analysis showed cellobiose and cellooligosaccharides are the best substrates for rNC-CDH1. The K(m) value of the rNC-CDH1 for cellooligosaccharide increases with the elongation of glucosyl units. k(cat) remains relatively constant when the chain length changes.
Applied and Environmental Microbiology | 2015
Amanda Hildebrand; Edyta Szewczyk; Hui Lin; Takao Kasuga; Zhiliang Fan
ABSTRACT We report engineering Neurospora crassa to improve the yield of cellobiose and cellobionate from cellulose. A previously engineered strain of N. crassa (F5) with six of seven β-glucosidase (bgl) genes knocked out was shown to produce cellobiose and cellobionate directly from cellulose without the addition of exogenous cellulases. In this study, the F5 strain was further modified to improve the yield of cellobiose and cellobionate from cellulose by increasing cellulase production and decreasing product consumption. The effects of two catabolite repression genes, cre-1 and ace-1, on cellulase production were investigated. The F5 Δace-1 mutant showed no improvement over the wild type. The F5 Δcre-1 and F5 Δace-1 Δcre-1 strains showed improved cellobiose dehydrogenase and exoglucanase expression. However, this improvement in cellulase expression did not lead to an improvement in cellobiose or cellobionate production. The cellobionate phosphorylase gene (ndvB) was deleted from the genome of F5 Δace-1 Δcre-1 to prevent the consumption of cellobiose and cellobionate. Despite a slightly reduced hydrolysis rate, the F5 Δace-1 Δcre-1 ΔndvB strain converted 75% of the cellulose consumed to the desired products, cellobiose and cellobionate, compared to 18% converted by the strain F5 Δace-1 Δcre-1.
Enzyme and Microbial Technology | 2013
Weihua Wu; Amanda Hildebrand; Takao Kasuga; Xiaochao Xiong; Zhiliang Fan
Direct cellobiose production from cellulose by a genetically modified fungus-Neurospora crassa, was explored in this study. A library of N. crassa sextuple beta-glucosidase (bgl) gene deletion strains was constructed. Various concentrations of cellobiose were detected in the culture broth of the N. crassa sextuple beta-glucosidase (bgl) gene deletion strains when grown on Avicel without exogenous cellulase addition. The sextuple bgl deletion strains expressing one of the three basally transcribed bgl genes are the best cellobiose producers. For most sextuple strains, the multiple bgl gene deletion has no negative effect on the production of other cellulases. The induction of major endoglucanases and exoglucanases on Avicel in most of the sextuple bgl deletions strains was as fast as or faster than that of the wild type, except for strain F4. The best cellobiose producing strain, F5, produced 7.7 g/L of cellobiose from 20 g/L of Avicel in four days and utilized the Avicel as fast as did the wild type (even in the presence of high cellobiose concentration). The cellobiose yield from cellulose was about 48.3%.
Journal of Biotechnology | 2013
Amanda Hildebrand; Theresa Schlacta; Rebeccah Warmack; Takao Kasuga; Zhiliang Fan
We report on engineering Escherichia coli to produce ethanol at high yield from gluconic acid (gluconate). Knocking out genes encoding for the competing pathways (l-lactate dehydrogenase and pyruvate formate lyase A) in E. coli KO11 eliminated lactate production, lowered the carbon flow toward acetate production, and improved the ethanol yield from 87.5% to 97.5% of the theoretical maximum, while the growth rate of the mutant strain was about 70% of the wild type. The corresponding genetic modifications led to a small improvement of ethanol yield from 101.5% to 106.0% on glucose. Deletion of the pyruvate dehydrogenase gene (pdh) alone improved the ethanol yield from 87.5% to 90.4% when gluconate was a substrate. The growth rate of the mutant strain was identical to that of the wild type. The corresponding genetic modification led to no improvements on ethanol yield on glucose.
Journal of Microbiological Methods | 2013
Edyta Szewczyk; Takao Kasuga; Zhiliang Fan
Despite its long-standing history as a model organism, Neurospora crassa has limited tools for repetitive gene deletions utilizing recyclable self-excising marker systems. Here we describe, for the first time, the functionality of a bacterial recombination system employing β-recombinase acting on six recognition sequences (β-rec/six) in N. crassa, which allowed repetitive site-specific gene deletion and marker recycling. We report generating the mus-51 deletion strain using this system, recycling the marker cassette, and subsequently deleting the global transcriptional regulator gene cre-1.
Archives of Microbiology | 2013
Weihua Wu; Takao Kasuga; Xiaochao Xiong; Di Ma; Zhiliang Fan
Abstract This study investigated the cellular location and the contribution of individual β-glucosidase (BGL) to total BGL activity in Neurospora crassa. Among the seven bgl genes, bgl3, bgl5, and bgl7 were transcribed at basal levels, whereas bgl1, bgl2, bgl4, and bgl6 were significantly up-regulated when the wild-type strain was induced with cellulose (Avicel). BGL1 and BGL4 were found to be contributors to intracellular BGL activity, whereas the activities of BGL2 and BGL6 were mainly extracellular. Sextuple bgl deletion strains expressing one of the three basally transcribed bgls did not produce any detectable BGL activity when they were grown on Avicel. BGL6 is the major contributor to overall BGL activity, and most of its activity resides cell-bound. The sextuple bgl deletion strain containing only bgl6 utilized cellobiose at a rate similar to that of the wild type, while the strain with only bgl6 deleted utilized cellobiose much slower than that of the wild type.
PLOS ONE | 2015
Amanda Hildebrand; Takao Kasuga; Zhiliang Fan
We report a novel production process for cellobionic acid from cellulose using an engineered fungal strain with the exogenous addition of laccase and a redox mediator. A previously engineered strain of Neurospora crassa (F5∆ace-1∆cre-1∆ndvB) was shown to produce cellobionate directly from cellulose without the addition of exogenous cellulases. Specifically, N. crassa produces cellulases, which hydrolyze cellulose to cellobiose, and cellobiose dehydrogenase (CDH), which oxidizes cellobiose to cellobionate. However, the conversion of cellobiose to cellobionate is limited by the slow re-oxidation of CDH by molecular oxygen. By adding low concentrations of laccase and a redox mediator to the fermentation, CDH can be efficiently oxidized by the redox mediator, with in-situ re-oxidation of the redox mediator by laccase. The conversion of cellulose to cellobionate was optimized by evaluating pH, buffer, and laccase and redox mediator addition time on the yield of cellobionate. Mass and material balances were performed, and the use of the native N. crassa laccase in such a conversion system was evaluated against the exogenous Pleurotus ostreatus laccase. This paper describes a working concept of cellobionate production from cellulose using the CDH-ATBS-laccase system in a fermentation system.
Journal of Microbiological Methods | 2014
Edyta Szewczyk; Takao Kasuga; Zhiliang Fan
In a previous study, we developed a cassette employing a bacterial β-recombinase acting on six recognition sequences (β-rec/six), which allowed repetitive site-specific gene deletion and marker recycling in Neurospora crassa. However, only one positive selection marker was used in the cassette. A tedious subsequent procedure was needed to purify homokaryons due to the lack of a negative selection after cassette eviction. Additionally, the endoxylanase xylP promoter from Penicillium chrysogenum used in the construct was not strongly regulated in N. crassa, which led to low efficiency in cassette eviction. Herein we report an improved variant of the self-excising β-recombinase/six cassette for repetitive gene deletions in N. crassa using a native endoxylanase gh10-2 promoter from N. crassa, plus the introduction of a bidirectional selection marker to facilitate homokaryon selection using a thymidine kinase (tk) gene (negative selection) in addition to the phosphinothricin resistance gene (bar(r)) (positive selection).
Enzyme and Microbial Technology | 2017
Hui Lin; Amanda Hildebrand; Takao Kasuga; Zhiliang Fan
In a cellulosic biorefinery, the cellulase enzymes needed for hydrolysis are one of the major contributors to high processing costs, while the hydrolysis product, cellobiose, has strong inhibition to the cellulases. In this study, we report engineering recombinant Neurospora crassa strains which are able to produce cellobionate, an organic acid, from cellulose without any enzyme addition. Recombinant strains were constructed by heterologously expressing laccase genes from different sources under different promoters in N. crassa F5Δmus-51Δace-1Δcre-1ΔndvB which has six out of seven β-glucosidase (bgl), two transcription factor (cre1 and ace-1), and the cellobionate phosphorylase (ndvB) genes deleted. The strain expressing laccase from Botrytis aclada under a copper metallothionein promoter (HL10) produced the highest laccase activity. N. crassa HL10 produced 47.4mM cellobionate from cellulose without any enzyme addition. The yield of cellobionate from hydrolyzed cellulose was about 94.5%. Conversion of cellobiose to cellobionate improved cellulose conversion and increases product yield.