Takashi Aoi
Kobe University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Takashi Aoi.
Nature Biotechnology | 2008
Masato Nakagawa; Michiyo Koyanagi; Koji Tanabe; Kazutoshi Takahashi; Tomoko Ichisaka; Takashi Aoi; Keisuke Okita; Yuji Mochiduki; Nanako Takizawa; Shinya Yamanaka
Direct reprogramming of somatic cells provides an opportunity to generate patient- or disease-specific pluripotent stem cells. Such induced pluripotent stem (iPS) cells were generated from mouse fibroblasts by retroviral transduction of four transcription factors: Oct3/4, Sox2, Klf4 and c-Myc. Mouse iPS cells are indistinguishable from embryonic stem (ES) cells in many respects and produce germline-competent chimeras. Reactivation of the c-Myc retrovirus, however, increases tumorigenicity in the chimeras and progeny mice, hindering clinical applications. Here we describe a modified protocol for the generation of iPS cells that does not require the Myc retrovirus. With this protocol, we obtained significantly fewer non-iPS background cells, and the iPS cells generated were consistently of high quality. Mice derived from Myc− iPS cells did not develop tumors during the study period. The protocol also enabled efficient isolation of iPS cells without drug selection. Furthermore, we generated human iPS cells from adult dermal fibroblasts without MYC.
Nature | 2009
Hyenjong Hong; Kazutoshi Takahashi; Tomoko Ichisaka; Takashi Aoi; Osami Kanagawa; Masato Nakagawa; Keisuke Okita; Shinya Yamanaka
Induced pluripotent stem (iPS) cells can be generated from somatic cells by the introduction of Oct3/4 (also known as Pou5f1), Sox2, Klf4 and c-Myc, in mouse and in human. The efficiency of this process, however, is low. Pluripotency can be induced without c-Myc, but with even lower efficiency. A p53 (also known as TP53 in humans and Trp53 in mice) short-interfering RNA (siRNA) was recently shown to promote human iPS cell generation, but the specificity and mechanisms remain to be determined. Here we report that up to 10% of transduced mouse embryonic fibroblasts lacking p53 became iPS cells, even without the Myc retrovirus. The p53 deletion also promoted the induction of integration-free mouse iPS cells with plasmid transfection. Furthermore, in the p53-null background, iPS cells were generated from terminally differentiated T lymphocytes. The suppression of p53 also increased the efficiency of human iPS cell generation. DNA microarray analyses identified 34 p53-regulated genes that are common in mouse and human fibroblasts. Functional analyses of these genes demonstrate that the p53–p21 pathway serves as a barrier not only in tumorigenicity, but also in iPS cell generation.
Science | 2008
Takashi Aoi; Kojiro Yae; Masato Nakagawa; Tomoko Ichisaka; Keisuke Okita; Kazutoshi Takahashi; Tsutomu Chiba; Shinya Yamanaka
Induced pluripotent stem (iPS) cells have been generated from mouse and human fibroblasts by the retroviral transduction of four transcription factors. However, the cell origins and molecular mechanisms of iPS cell induction remain elusive. This report describes the generation of iPS cells from adult mouse hepatocytes and gastric epithelial cells. These iPS cell clones appear to be equivalent to embryonic stem cells in gene expression and are competent to generate germline chimeras. Genetic lineage tracings show that liver-derived iPS cells are derived from albumin-expressing cells. No common retroviral integration sites are found among multiple clones. These data suggest that iPS cells are generated by direct reprogramming of lineage-committed somatic cells and that retroviral integration into specific sites is not required.
Nature Biotechnology | 2009
Kyoko Miura; Yohei Okada; Takashi Aoi; Aki Okada; Kazutoshi Takahashi; Keisuke Okita; Masato Nakagawa; Michiyo Koyanagi; Koji Tanabe; Mari Ohnuki; Daisuke Ogawa; Eiji Ikeda; Hideyuki Okano; Shinya Yamanaka
We evaluated the teratoma-forming propensity of secondary neurospheres (SNS) generated from 36 mouse induced pluripotent stem (iPS) cell lines derived in 11 different ways. Teratoma-formation of SNS from embryonic fibroblast–derived iPS cells was similar to that of SNS from embryonic stem (ES) cells. In contrast, SNS from iPS cells derived from different adult tissues varied substantially in their teratoma-forming propensity, which correlated with the persistence of undifferentiated cells.
Science Translational Medicine | 2012
Naohiro Egawa; Shiho Kitaoka; Kayoko Tsukita; Motoko Naitoh; Kazutoshi Takahashi; Takuya Yamamoto; Fumihiko Adachi; Takayuki Kondo; Keisuke Okita; Isao Asaka; Takashi Aoi; Akira Watanabe; Yasuhiro Yamada; Asuka Morizane; Jun Takahashi; Takashi Ayaki; Hidefumi Ito; Katsuhiro Yoshikawa; Satoko Yamawaki; Shigehiko Suzuki; Dai Watanabe; Hiroyuki Hioki; Takeshi Kaneko; Kouki Makioka; Koichi Okamoto; Hiroshi Takuma; Akira Tamaoka; Kazuko Hasegawa; Takashi Nonaka; Masato Hasegawa
Anacardic acid attenuates mutant TDP-43–associated abnormalities in motor neurons derived from ALS patient–specific induced pluripotent stem cells. A Stepping Stone to ALS Drug Screening Amyotrophic lateral sclerosis (ALS) is an untreatable disorder in which the motor neurons degenerate, resulting in paralysis and death. Induced pluripotent stem cell (iPSC) technology makes it possible to analyze motor neurons from patients with ALS and to use them for screening new candidate drugs. In new work, Egawa et al. obtained motor neurons by inducing differentiation of iPSC lines derived from several patients with familial ALS. These patients carried disease-causing mutations in the gene encoding Tar DNA binding protein-43 (TDP-43). The ALS motor neurons in culture recapitulated cellular and molecular abnormalities associated with ALS. For example, the authors found that mutant TDP-43 in the ALS motor neurons perturbed RNA metabolism and that the motor neurons were more vulnerable to cellular stressors such as arsenite. The researchers then used the ALS motor neurons in a drug screening assay and identified a compound called anacardic acid, a histone acetyltransferase inhibitor, that could reverse some of the ALS phenotypes observed in the motor neurons. The new work provides an encouraging step toward using motor neurons generated from iPSCs derived from ALS patients to learn more about what triggers the death of motor neurons in this disease and to identify new candidate drugs that may be able to slow or reverse the devastating loss of motor neurons. Amyotrophic lateral sclerosis (ALS) is a late-onset, fatal disorder in which the motor neurons degenerate. The discovery of new drugs for treating ALS has been hampered by a lack of access to motor neurons from ALS patients and appropriate disease models. We generate motor neurons from induced pluripotent stem cells (iPSCs) from familial ALS patients, who carry mutations in Tar DNA binding protein-43 (TDP-43). ALS patient–specific iPSC–derived motor neurons formed cytosolic aggregates similar to those seen in postmortem tissue from ALS patients and exhibited shorter neurites as seen in a zebrafish model of ALS. The ALS motor neurons were characterized by increased mutant TDP-43 protein in a detergent-insoluble form bound to a spliceosomal factor SNRPB2. Expression array analyses detected small increases in the expression of genes involved in RNA metabolism and decreases in the expression of genes encoding cytoskeletal proteins. We examined four chemical compounds and found that a histone acetyltransferase inhibitor called anacardic acid rescued the abnormal ALS motor neuron phenotype. These findings suggest that motor neurons generated from ALS patient–derived iPSCs may provide a useful tool for elucidating ALS disease pathogenesis and for screening drug candidates.
Nature Communications | 2013
Shin Ichi Mae; Akemi Shono; Fumihiko Shiota; Tetsuhiko Yasuno; Masatoshi Kajiwara; Nanaka Gotoda-Nishimura; Sayaka Arai; Aiko Sato-Otubo; Taro Toyoda; Kazutoshi Takahashi; Naoki Nakayama; Chad A. Cowan; Takashi Aoi; Seishi Ogawa; Andrew P. McMahon; Shinya Yamanaka; Kenji Osafune
A method for stimulating the differentiation of human pluripotent stem cells into kidney lineages remains to be developed. Most cells in kidney are derived from an embryonic germ layer known as intermediate mesoderm. Here we show the establishment of an efficient system of homologous recombination in human pluripotent stem cells by means of bacterial artificial chromosome-based vectors and single-nucleotide polymorphism array-based detection. This system allowed us to generate human-induced pluripotent stem cell lines containing green fluorescence protein knocked into OSR1, a specific intermediate mesoderm marker. We have also established a robust induction protocol for intermediate mesoderm, which produces up to 90% OSR1(+) cells. These human intermediate mesoderm cells can differentiate into multiple cell types of intermediate mesoderm-derived organs in vitro and in vivo, thereby supplying a useful system to elucidate the mechanisms of intermediate mesoderm development and potentially providing a cell source for regenerative therapies of the kidney.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Masatoshi Kajiwara; Takashi Aoi; Keisuke Okita; Ryosuke Takahashi; Haruhisa Inoue; Naoya Takayama; Hiroshi Endo; Koji Eto; Junya Toguchida; Shinji Uemoto; Shinya Yamanaka
Hepatocytes generated from human induced pluripotent stem cells (hiPSCs) are unprecedented resources for pharmaceuticals and cell therapy. However, the in vitro directed differentiation of human pluripotent stem cells into mature hepatocytes remains challenging. Little attention has so far been paid to variations among hiPSC lines in terms of their hepatic differentiation. In the current study, we developed an improved hepatic differentiation protocol and compared 28 hiPSC lines originated from various somatic cells and derived using retroviruses, Sendai viruses, or episomal plasmids. This comparison indicated that the origins, but not the derivation methods, may be a major determinant of variation in hepatic differentiation. The hiPSC clones derived from peripheral blood cells consistently showed good differentiation efficiency, whereas many hiPSC clones from adult dermal fibroblasts showed poor differentiation. However, when we compared hiPSCs from peripheral blood and dermal fibroblasts from the same individuals, we found that variations in hepatic differentiation were largely attributable to donor differences, rather than to the types of the original cells. These data underscore the importance of donor differences when comparing the differentiation propensities of hiPSC clones.
Molecular Reproduction and Development | 2010
Masanori Imamura; Takashi Aoi; Ako Tokumasu; Nathan Mise; Kuniya Abe; Shinya Yamanaka; Toshiaki Noce
Pluripotent stem cells can be established by various methods, but they share several cytological properties, including germ cell differentiation in vitro, independently of their origin. Although mouse induced pluripotent stem (iPS) cells can produce functional gametes in vivo, it is still unclear whether or not they have the ability to produce presumptive germ cells in vitro. Here, we show that mouse iPS cells derived from adult hepatocytes were able to differentiate into presumptive germ cells marked by mouse vasa homolog (Mvh) expression in feeder‐free or suspension cultures. Embryoid body (EB) formation from iPS cells also induced the formation of round‐shaped cells resembling immature oocytes. Mvh+ cells formed clumps by co‐aggregation with differentiation‐supporting cells, and increased expression of germ cell markers was detected in these cell aggregates. Differentiation culture of presumptive germ cells from iPS cells could provide a conventional system for facilitating our understanding of the mechanisms underlying direct reprogramming and germline competency. Mol. Reprod. Dev. 77: 802–811, 2010.
PLOS ONE | 2014
Nobu Oshima; Yasuhiro Yamada; Satoshi Nagayama; Kenji Kawada; Suguru Hasegawa; Hiroshi Okabe; Yoshiharu Sakai; Takashi Aoi
Cancer stem cells (CSCs) are considered to be responsible for the dismal prognosis of cancer patients. However, little is known about the molecular mechanisms underlying the acquisition and maintenance of CSC properties in cancer cells because of their rarity in clinical samples. We herein induced CSC properties in cancer cells using defined factors. We retrovirally introduced a set of defined factors (OCT3/4, SOX2 and KLF4) into human colon cancer cells, followed by culture with conventional serum-containing medium, not human embryonic stem cell medium. We then evaluated the CSC properties in the cells. The colon cancer cells transduced with the three factors showed significantly enhanced CSC properties in terms of the marker gene expression, sphere formation, chemoresistance and tumorigenicity. We designated the cells with CSC properties induced by the factors, a subset of the transduced cells, as induced CSCs (iCSCs). Moreover, we established a novel technology to isolate and collect the iCSCs based on the differences in the degree of the dye-effluxing activity enhancement. The xenografts derived from our iCSCs were not teratomas. Notably, in contrast to the tumors from the parental cancer cells, the iCSC-based tumors mimicked actual human colon cancer tissues in terms of their immunohistological findings, which showed colonic lineage differentiation. In addition, we confirmed that the phenotypes of our iCSCs were reproducible in serial transplantation experiments. By introducing defined factors, we generated iCSCs with lineage specificity directly from cancer cells, not via an induced pluripotent stem cell state. The novel method enables us to obtain abundant materials of CSCs that not only have enhanced tumorigenicity, but also the ability to differentiate to recapitulate a specific type of cancer tissues. Our method can be of great value to fully understand CSCs and develop new therapies targeting CSCs.
Gut | 2006
Takashi Aoi; Hiroyuki Marusawa; Tosiya Sato; Tsutomu Chiba; M. Maruyama
The development of gastric epithelial neoplasia is closely linked to precursor conditions in the background mucosa.1–3 Recently, endoscopic mucosal resection (EMR) has become widely used for the treatment of gastric neoplasia,4 resulting in almost complete conservation of the patient’s stomach. To determine the risk of a second cancer in the stomach that once gave rise to epithelial neoplasia, we conducted a long term retrospective cohort study of 255 patients with primary gastric epithelial neoplasia who underwent curative resection by EMR between 1983 and 2002 at our hospital. Characteristics of the subjects at the initial treatment are shown in table 1. Synchronous multiple neoplasias were confirmed in 19 (7.5 %) of the 255 subjects; 56 patients had adenomas and 199 had cancer. In the eight patients with both gastric cancer and adenoma, cancer was taken as the representative histology. In this study, we defined lesions classified as category 3 in the Vienna classification5 as “adenoma” and categories 4 and 5 as “cancer”. View this table: Table 1 Characteristics of the …