Takashi Kadono
University of Kitakyushu
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Takashi Kadono.
Biochemical and Biophysical Research Communications | 2003
Tomonori Kawano; Takashi Kadono; Takuya Furuichi; Shoshi Muto; Frédéric Lapeyrie
Trivalent cations such as those of Al, La, and Gd are phytotoxic. Our previous works showed that addition of LaCl(3) or GdCl(3) to tobacco cells triggers the generation of superoxide (O(2)*-). Here, we show that AlCl(3) at normal physiological pH (5.8) induces much greater production of O(2)*- (detected with a specific chemiluminescence probe), indicating that these trivalent cations similarly induce the oxidative bursts. It was shown that NADPH oxidase is involved in the generation of O(2)*- and the yield of O(2)*- was dose-dependent (ca. 6mM Al, optimal). Following the acute spike of O(2)*-, a gradual increase in cytosolic-free Ca(2+) concentration ([Ca(2+)](c)) was detected with the luminescence of recombinant aequorin over-expressed in the cytosol. Interestingly, a O(2)*- scavenger and a Ca(2+) chelator significantly lowered the level of [Ca(2+)](c) increase, indicating that the Al-induced O(2)*- stimulates the influx of Ca(2+). Compared to the induction of O(2)*- generation, the [Ca(2+)](c) elevation was shown to be maximal (340 nM) at relatively lower Al concentrations (ca. 1.25 mM). Thus, the Al concentration optimal for O(2)*- is too much (inhibitory) for [Ca(2+)](c). In addition, high concentrations of Al were shown to be inhibitory to the H(2)O(2)-induced Ca(2+) influx. This explains the ineffectiveness of high Al concentration in the oxidative burst-mediated induction of [Ca(2+)](c) increase. It is likely that Al-induced [Ca(2+)](c) elevation is manifested from the finely geared balance between the O(2)*- -mediated driving force and the channel inhibition-mediated brake. Furthermore, it is note-worthy that Al (< or =10mM) showed no inhibitory effect on the hypo-osmolarity-induced Ca(2+) influx, implying that Al may be a selective inhibitor of redox-responsive Ca(2+) channels. Possible target channels of Al actions are discussed.
Protoplasma | 2004
Takashi Kadono; Tomonori Kawano; Hiroshi Hosoya; Toshikazu Kosaka
Summary.Paramecium bursaria (green paramecium) possesses endosymbiotically growing chlorella-like green algae. An aposymbiotic cell line of P. bursaria (MBw-1) was prepared from the green MB-1 strain with the herbicide paraquat. The SA-2 clone of symbiotic algae was employed to reinfect MBw-1 cells and thus a regreened cell line (MBr-1) was obtained. The regreened paramecia were used to study the impact of the host’s growth status on the life cycle of the symbiotic algae. Firstly, the relationship between the timing of algal propagation and the host cell division was investigated by counting the algal cells in single host cells during and after the host cell division and also in the stationary phase. Secondly, the changes in the endogenous chlorophyll level, DNA content, and cell size in the symbiotic algae were monitored by flow cytometry and fluorescence microscopy. The number of algae was shown to be doubled prior to or during the host cell division and the algal population in the two daughter cells is maintained at constant level until the host cell cycle reenters the cytokinesis, suggesting that algal propagation and cell cycle are dependent on the host’s cell cycle. During the host’s stationary growth, unicellular algal vegetatives with low chlorophyll content were dominant. In contrast, complexes of algal cells called sporangia (containing 1–4 autospores) were present in the logarithmically growing hosts, indicating that algal cell division leading to the formation of sporangia with multiple autospores is active in the dividing paramecia.
Plant Signaling & Behavior | 2006
Takashi Kadono; Yuka Yamaguchi; Takuya Furuichi; Manabu Hirono; Jean Pierre Garrec; Tomonori Kawano
Ozone (O3)-induced cell death in two suspension-cultured cell lines of tobacco (Nicotiana tabacum L.) derived from Bel-W3 (hyper-sensitive to O3) and Bel-B (highly tolerant to O3) varieties were studied. By exposing the newly prepared cell lines to the pulse of ozonized air, we could reproduce the conditions demonstrating the difference in O3 sensitivity as observed in their original plants, depending on the exposure time. Since O3-induced acute cell death was observed in the dark, the requirement for photochemical reactions could be eliminated. Addition of several ROS scavengers and chelators inhibited the cell death induced by O3, indicating that singlet oxygen (1O2), hydrogen peroxide (H2O2), hydroxyl radical and redox-active metals such as Fe2+ play central roles in O3-induced acute damages to the cells. As expected, we observed the generation of 1O2 and H2O2 in the O3-treated cells using chemiluminescent probes. On the other hand, an NADPH oxidase inhibitor, superoxide dismutase (SOD), and some SOD mimics showed no inhibitory effect. Thiols added as antioxidants unexpectedly behaved as prooxidants drastically enhancing the O3-induced cell death. It is noteworthy that some ROS scavengers effectively rescued the cells from dying even treated after the pulse of O3 exposure, confirming the post-ozone progress of ROS-dependent cell death mechanism. Since one of the key differences between Bel-B and Bel-W3 was suggested to be the capacity for ROS detoxification by catalase, the endogenous catalase activities were compared in vivo in two cell lines. As expected, catalase activity in Bel-B cells was ca. 7-fold greater than that in Bel-W3 cells. Interestingly, Ca2+ chelators added prior to (not after) the pulse of O3 effectively inhibited the induction of cell death. In addition, increases in cytosolic Ca2+ concentration sensitive to Ca2+ chelators, ion channel blockers, and ROS scavengers were observed in the transgenic Bel-W3 cells expressing aequorin, suggesting the action of Ca2+ as a secondary messenger initiating the oxidative cell death. The O3-induced calcium response in Bel-W3 cells was much greater than Bel-B cells. Based on the results, possible pathways for O3-dependent generation of the lethal level of ROS and corresponding signaling mechanism for induction of cell death were discussed.
Zeitschrift für Naturforschung C | 2004
Tomonori Kawano; Shigeo Tanaka; Takashi Kadono; Shoshi Muto
Abstract Salicylic acid β-glucoside (SAG) is a storage form of a defense signal against pathogens, releasing free salicylic acid (SA), to meet the requirements in plants. Since excess SA induces locally restricted cell death following oxidative burst and Ca2+ influx in plants, the effects of SAG on cell viability, Ca2+ influx, and generation of superoxide (O•−) were examined in suspension-cultured tobacco BY-2 cells expressing aequorin. Among SA-related chemicals tested, only SAG induced the slow and long-lasting O2•− generation, although SAG was less active in acute O2•− generation, Ca2+ influx and induction of cell death. The prolonging action of SAG is likely due to gradual release of SA and the data suggested that a peroxidasedependent reaction is involved. Notably, pretreatment with low-dose SA (50 μm) enhanced the response to SAG by 2.5-fold. There are four possible secondary messengers in early SA signaling detectable in the BY-2 culture, namely O2•−, H2O2, Ca2+ and protein kinase (PK). If these messengers are involved in the low-dose SA-dependent priming for SAG response, they should be inducible by low-dose SA. Among the four SA-inducible signaling events, PK activation was excluded from the low-dose SA action since a much higher SA dose (> 0.4 mм) was required for PK activation.
Zeitschrift für Naturforschung C | 2004
Tomonori Kawano; Takashi Kadono; Toshikazu Kosaka; Hiroshi Hosoya
Abstract A single cell of the green paramecia (Paramecium bursaria) harbors several hundreds of endo-symbiotic Chlorella-like algae in its cytoplasm. Removal of algae from the host organism and re-association of ex-symbiotic host paramecia with ex-symbiotic algae can be experimentally demonstrated in the laboratory. However, the mechanism precisely governing the alga-protozoan association is not fully understood, and the origin of symbiosis in the evolutionary view has not been given. Here, we propose the possible biochemical models (models 1 and 2) explaining the co-evolution between Paramecium species and algal symbionts by pointing out that algal photosynthesis in the host paramecia plays a dual role providing the energy source and the risk of oxidative damage to the host. Model 1 lays stress on the correlation between the (re)greening ability of the paramecia and the tolerance to oxidative stress whereas model 2 emphasizes the cause of evolutionary selection leading to the emergence of Paramecium species tolerant against reactive oxygen species.
Zeitschrift für Naturforschung C | 2007
Miki Aonuma; Takashi Kadono; Tomonori Kawano
Calcium ion (Ca2+) is one of the key regulatory elements for ciliary movements in the Paramecium species. It has long been known that members of Paramecium species including green paramecia (Paramecium bursaria) exhibit galvanotaxis which is the directed movement of cells toward the anode by swimming induced in response to an applied voltage. However, our knowledge on the mode of Ca2+ action during green paramecia anodic galvanotactic response is still largely limited. In the present study, quantification of anodic galvanotaxis was carried out in the presence and absence of various inhibitors of calcium signaling and calcium channels. Interestingly, galvanotactic movement of the cells was completely inhibited by a variety of Ca2+-related inhibitors. Such inhibitors include a Ca2+ chelator (EGTA), general calcium channel blockers (such as lanthanides), inhibitors of intracellular Ca2+ release (such as ruthenium red and neomycin), and inhibitors of T-type calcium channels (such as NNC 55-0396, 1-octanol and Ni2+). However, L-type calcium channel inhibitors such as nimodipine, nifedipine, verapamil, diltiazem and Cd2+ showed no inhibitory action. This may be the first implication for the involvement of T-type calcium channels in protozoan cellular movements.
Zeitschrift für Naturforschung C | 2006
Takashi Kadono; Kazuya Uezu; Toshikazu Kosaka; Tomonori Kawano
Detergents including fatty acid salts act as surface-active agents and thus possibly damage the plasma membrane structures of aquatic organisms. Therefore, when excess, the houseused and industrial outflows of such detergents into aquatic environments may have considerable impacts on the ecosystem. In this study, we propose the use of green paramecia (Paramecium bursaria) for assessing the acute toxicity of eight fatty acid salts (Na and K salts of oleate, palmitate, laurate and myristate) under various water conditions. The Paramecium in the stationary phase were used for a toxicity assay carried out on 12-well microplates and the median lethal concentration (LC50) was determined for each fatty acid salt. In the low mineral culture medium prepared with ultra-pure water, the LC50 for each fatty acid ranged from 5.8 to 144 ppm (w/v). The toxic levels of fatty acid salts differed in the following order: laurate, myristate ≥ oleate, palmitate. The toxic levels of oleate and palmitate salts were ca. 10-fold lower than those of laurate and myristate salts. When river water and local tap water instead of ultra-pure water were used for culturing, the toxic levels of all fatty acid salts were drastically lowered compared to the low mineral condition by 30- to 100-fold (198-660 ppm, w/v). Similar detoxification effect was observed when Ca or Mg was added to the low mineral culture media, indicating that the toxicity of fatty acid salts can be notably lowered as the mineral content increases. As we demonstrated that toxicities of fatty acid salts can be lowered in river water and tap water compared to the low mineral condition, some chemical substances behave differently in the different water conditions. Therefore, the use of natural waters reflecting the real environmental conditions in further collection of data on the ecotoxicity impacts of variety of chemicals is highly encouraged.
Plant Signaling & Behavior | 2011
Hiroshi Ohkawa; Naoko Hashimoto; Shunsuke Furukawa; Takashi Kadono; Tomonori Kawano
Single-cell green paramecia (Paramecium bursaria) is a swimming vehicle that carries several hundred cells of endo-symbiotic green algae. Here, a novel model for endo-symbiosis, prepared by introducing and maintaining the cells of cyanobacterium (Synechocystis spp. PCC 6803) in the apo-symbiotic cells of P. bursaria is described.
Zeitschrift für Naturforschung C | 2011
Tomoko Kagenishi; Ken Yokawa; Takashi Kadono; Kazuya Uezu; Tomonori Kawano
A previous work suggested that peptides from the histidine-containing copper-binding motifs in human prion protein (PrP) function as peroxidase-like biocatalysts catalyzing the generation of superoxide anion radicals in the presence of neurotransmitters (aromatic monoamines) and phenolics such as tyrosine and tyrosyl residues on proteins. In this study, using various phenolic substrates, the phenol-dependent superoxide-generating activities of PrP-derived peptide sequences were compared. Among the peptides tested, the GGGTH pentapeptide was shown to be the most active catalyst for phenol-dependent reactions. Based on these results, we designed a series of oligoglycyl-histidines as novel peroxidative biocatalysts, and their catalytic performances including kinetics, heat tolerance, and freezing tolerance were analysed
Zeitschrift für Naturforschung C | 2006
Cun Lin; Takashi Kadono; Kazuharu Yoshizuka; Takuya Furuichi; Tomonori Kawano
Abstract Effects of naturally existing rare-earth metals (REMs; atomic numbers, 39, 57D60, 62D71; Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu), added as chloride salts, on Ca2+ influx induced by two different stimuli, namely hypoosmotic shock and hydrogen peroxide, were examined in a suspension-cultured transgenic cell line of BY-2 tobacco cells expressing aequorin, a Ca2+-sensitive luminescent protein in cytosol. Most REM salts used here showed inhibitory effect against Ca2+ influx. Especially NdCl3, SmCl3, EuCl3, GdCl3 and TbCl3 showed the most robust inhibitory action. In contrast, LuCl3, YbCl3, ErCl3 and YCl3 were shown to be poor inhibitors of Ca2+ influx. Since REMs tested here form a sequential range of ionic radii from 86.1 to 103.2 pm and the optimal range of ionic radii required for blocking the flux of Ca2+ was determined for each stimulus. The hydrogen peroxideinduced Ca2+ influx was optimally blocked by REMs with a broad range of ionic radii (93.8D 101 pm) which is slightly smaller than or similar to that of Ca2+ (100 pm), while the hypoosmotically induced flux of Ca2+ was inhibited optimally by few REMs with a narrower range of relatively smaller ionic radii around that of Gd3+ (93.8 pm) a well known inhibitor of stretch-activated channels. Possible applications of such series of channel blockers in elucidation of plant signal transduction pathways are encouraged