Toshikazu Kosaka
Hiroshima University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Toshikazu Kosaka.
Protoplasma | 1998
Naohisa Nishihara; S. Horiike; Tadao Takahashi; Toshikazu Kosaka; Y. Shigenaka; Hiroshi Hosoya
SummaryThe green parameciumParamecium bursaria has many endosymbiotic algae in its cytoplasm. Here, we cloned and characterized endosymbiotic algae fromP. bursaria and examined in detail the interaction between the cloned algae and algae-free paramecia. Homogenates ofP. bursaria were cultured on agar plates containing various kinds of media to establish clones of the endosymbiotic algae. Many algal colonies were obtained from poorly nutritious medium (CA medium) after one month in culture. Algae were picked up from these colonies and inoculations were repeated 9 times on agar plates containing CA medium. On enriched media including bacto-peptone, glucose, proteose-peptone and/or yeast extract, however, bacteria and mold grew rapidly and no algal colonies were formed. When the cloned algae were cultured in liquid CA medium, they grew faster than on agar plates and the numbers stayed constant at 1 × 107 algae/ml after 7 days in culture. They revealed high infectivity to algae-free paramecia, and an incubation period of 24 h and at least 1 × 103 algae/paramecium were required to achieve successful infection (80–90%). The growth and infection rate did not change through 74 repeated inoculations of algae in liquid CA medium. Optical microscopic observations revealed marked morphological similarity between endosymbiotic algae and free-livingChlorella, but the latter showed no infectivity to algae-free paramecia. The cloned endosymbiotic algae presented here will provide an excellent opportunity to examine the mechanism of symbiont-host interaction.
Protoplasma | 2004
Takashi Kadono; Tomonori Kawano; Hiroshi Hosoya; Toshikazu Kosaka
Summary.Paramecium bursaria (green paramecium) possesses endosymbiotically growing chlorella-like green algae. An aposymbiotic cell line of P. bursaria (MBw-1) was prepared from the green MB-1 strain with the herbicide paraquat. The SA-2 clone of symbiotic algae was employed to reinfect MBw-1 cells and thus a regreened cell line (MBr-1) was obtained. The regreened paramecia were used to study the impact of the host’s growth status on the life cycle of the symbiotic algae. Firstly, the relationship between the timing of algal propagation and the host cell division was investigated by counting the algal cells in single host cells during and after the host cell division and also in the stationary phase. Secondly, the changes in the endogenous chlorophyll level, DNA content, and cell size in the symbiotic algae were monitored by flow cytometry and fluorescence microscopy. The number of algae was shown to be doubled prior to or during the host cell division and the algal population in the two daughter cells is maintained at constant level until the host cell cycle reenters the cytokinesis, suggesting that algal propagation and cell cycle are dependent on the host’s cell cycle. During the host’s stationary growth, unicellular algal vegetatives with low chlorophyll content were dominant. In contrast, complexes of algal cells called sporangia (containing 1–4 autospores) were present in the logarithmically growing hosts, indicating that algal cell division leading to the formation of sporangia with multiple autospores is active in the dividing paramecia.
Cytometry | 2000
Bogdan I. Gerashchenko; Naohisa Nishihara; Toshiko Ohara; Hiroaki Tosuji; Toshikazu Kosaka; Hiroshi Hosoya
BACKGROUND The stable symbiotic association between Paramecium bursaria and algae is of interest to study such mechanisms in biology as recognition, specificity, infection, and regulation. The combination of algae-free strains of P. bursaria, which have been recently established by treating their stocks of green paramecia with herbicide paraquat (Hosoya et al.: Zool Sci 12: 807-810, 1995), with the cloned symbiotic algae isolated from P. bursaria (Nishihara et al.: Protoplasma 203: 91-99, 1998), provides an excellent clue to gain fundamental understanding of these phenomena. METHODS Flow cytometry and light microscopy have been employed to characterize the algal cells after they have been released from the paramecia by ultrasonic treatment. Algal optical properties such as light scattering and endogenous chlorophyll fluorescence intensity have been monitored for symbiotic and free-living strains, and strains at stages of interaction with a host. RESULTS Neither algal morphology nor chlorophyll content has been found to be altered by sonication of green paramecia. This fact allows to interpret in adequate degree changes in the optical properties of symbiont that just has been released from the association with a host (decreased forward light scatter and chlorophyll fluorescence signals). Optical characterization of both symbiotic and free-living algal strains with respect to their ability to establish symbioses with P. bursaria showed that chlorophyll content per cell volume seems to be a valuable factor for predicting a favorable symbiotic relationship between P. bursaria and algae. CONCLUSIONS Flow cytometry combined with algae-free paramecia and cloned symbiotic algae identifies algal populations that may be recognized by host cells for the establishment of symbioses.
Zeitschrift für Naturforschung C | 2004
Tomonori Kawano; Takashi Kadono; Toshikazu Kosaka; Hiroshi Hosoya
Abstract A single cell of the green paramecia (Paramecium bursaria) harbors several hundreds of endo-symbiotic Chlorella-like algae in its cytoplasm. Removal of algae from the host organism and re-association of ex-symbiotic host paramecia with ex-symbiotic algae can be experimentally demonstrated in the laboratory. However, the mechanism precisely governing the alga-protozoan association is not fully understood, and the origin of symbiosis in the evolutionary view has not been given. Here, we propose the possible biochemical models (models 1 and 2) explaining the co-evolution between Paramecium species and algal symbionts by pointing out that algal photosynthesis in the host paramecia plays a dual role providing the energy source and the risk of oxidative damage to the host. Model 1 lays stress on the correlation between the (re)greening ability of the paramecia and the tolerance to oxidative stress whereas model 2 emphasizes the cause of evolutionary selection leading to the emergence of Paramecium species tolerant against reactive oxygen species.
Zeitschrift für Naturforschung C | 2006
Takashi Kadono; Kazuya Uezu; Toshikazu Kosaka; Tomonori Kawano
Detergents including fatty acid salts act as surface-active agents and thus possibly damage the plasma membrane structures of aquatic organisms. Therefore, when excess, the houseused and industrial outflows of such detergents into aquatic environments may have considerable impacts on the ecosystem. In this study, we propose the use of green paramecia (Paramecium bursaria) for assessing the acute toxicity of eight fatty acid salts (Na and K salts of oleate, palmitate, laurate and myristate) under various water conditions. The Paramecium in the stationary phase were used for a toxicity assay carried out on 12-well microplates and the median lethal concentration (LC50) was determined for each fatty acid salt. In the low mineral culture medium prepared with ultra-pure water, the LC50 for each fatty acid ranged from 5.8 to 144 ppm (w/v). The toxic levels of fatty acid salts differed in the following order: laurate, myristate ≥ oleate, palmitate. The toxic levels of oleate and palmitate salts were ca. 10-fold lower than those of laurate and myristate salts. When river water and local tap water instead of ultra-pure water were used for culturing, the toxic levels of all fatty acid salts were drastically lowered compared to the low mineral condition by 30- to 100-fold (198-660 ppm, w/v). Similar detoxification effect was observed when Ca or Mg was added to the low mineral culture media, indicating that the toxicity of fatty acid salts can be notably lowered as the mineral content increases. As we demonstrated that toxicities of fatty acid salts can be lowered in river water and tap water compared to the low mineral condition, some chemical substances behave differently in the different water conditions. Therefore, the use of natural waters reflecting the real environmental conditions in further collection of data on the ecotoxicity impacts of variety of chemicals is highly encouraged.
Cytometry | 2001
Bogdan I. Gerashchenko; Toshikazu Kosaka; Hiroshi Hosoya
BACKGROUND The ciliate Paramecium bursaria normally exists as a green paramecium system because each animal cell carries several hundred, unicellular, green, algal cells in its cytoplasm. One of the remarkable and poorly understood pecularities of this system is the steady state in the number of algae per protozoan cell. A major point in the study of mechanisms governing the persistence of symbiont numbers is adequate understanding of the algal life cycle. METHODS Asynchronously growing cell populations of several algal strains (SA-1, SA-3, and SA-9) exsymbiotic from P. bursaria were characterized by flow cytometry. Algal endogenous chlorophyll and DNA contents were monitored to analyze cell growth kinetics at logarithmic and stationary culture phases. Cell sorting visualized the morphology of algae corresponding to the hyperhaploid (2C and 4C) DNA peaks. RESULTS Cell-division cycle-dependent changes in chlorophyll and DNA content distributions were most dramatic in logarithmically growing algal populations (an increase in the number of S-phase cells and cells with more chlorophyll), which are thought to be associated with accelerated DNA and chlorophyll metabolism in log-phase algal cultures. Upon reaching the stationary phase of growth, algal populations distinctly showed, in addition to one haploid (1C) DNA peak, two hyperhaploid peaks (2C and 4C) corresponding mainly to cells with two and four nuclei, respectively. CONCLUSIONS Growth characteristics of algae exsymbiotic from P. bursaria monitored by flow cytometry provide valuable information for the analysis of the algal life cycle, which is important for understanding the regulation mechanisms of symbiont numbers.
Cytoskeleton | 1999
Naohisa Nishihara; Sintarou Horiike; Yukako Oka; Tadao Takahashi; Toshikazu Kosaka; Hiroshi Hosoya
Paramecia demonstrate rotational cytoplasmic streaming, in which some cytoplasmic granules and organelles, including symbiotic algae, flow in a constant direction. To elucidate the mechanism of this streaming, we examined the effects of cytochalasins (cytochalasin B and D, and dihydrocytochalasin B) and nocodazole, which are reagents affecting microfilament and microtubule networks, respectively, in the cell. In previous reports, paramecia have been compressed with a coverslip to facilitate observation of cytoplasmic streaming. Here we found that the cytoplasmic streaming of paramecia was suppressed by such compression and then observed the process without compression in this work. In the presence of cytochalasins, cytoplasmic streaming was not affected. In contrast, treatment with nocodazole (10 microg/ml) resulted in discontinuation of cytoplasmic streaming in paramecia. Immunofluorescent microscopic observations by confocal microscopy revealed that the number of intracellular microtubules in nocodazole-treated cells was markedly decreased compared to that of controls. Electron microscopic observations confirmed the decrease. These results suggest that cytoplasmic microtubules play an important role in the cytoplasmic streaming of paramecia.
Experimental Cell Research | 1991
Osamu Numata; Tadashi Tomiyoshi; Yasuhiro Kurasawa; Fu Zhen-Xing; Mihoko Takahashi; Toshikazu Kosaka; Joe Chiba; Yoshio Watanabe
Tetrahymena 14-nm filament-forming protein (49K protein) is a structural protein which is involved in activity of the pronuclei during conjugation (O. Numata, T. Sugai, and Y. Watanabe (1985) Nature (London) 314, 192-194). Using monoclonal and polyclonal antibodies, we here demonstrate the presence of a cross-reactive protein (CRP-49) within the macronuclear replication bands of Euplotes harpa and E. eurystomus which is recognized by anti-49K protein antibodies. Immunoblotting reveals that both monoclonal and polyclonal antibodies cross-react to a protein with an apparent molecular mass of 50 kDa in an E. harpa cell extract and to a protein of 49 kDa in a macronuclear extract of E. eurystomus. The antibodies used in this study have no effect upon in vitro DNA synthesis in the replication band of E. eurystomus.
Current protocols in immunology | 2010
Bogdan I. Gerashchenko; Toshiyuki Takahashi; Toshikazu Kosaka; Hiroshi Hosoya
Unicellular green alga is a very convenient object for flow cytometric characterization. Flow cytometry has been proposed as a quick and reliable tool for studying life cycle and growth of unicellular algae. Cell size of vegetating algae can be monitored in association with their DNA and endogenous chlorophyll content. Cells of interest (e.g., group of cells of a certain stage of the life cycle) in an asynchronously proliferating cell population can be sorted out for further microscopical or molecular biology studies. This methodological approach can be helpful for researchers who are interested in algal proliferation. Curr. Protoc. Cytom. 52:11.19.1‐11.19.6.
Molecular Physics | 2006
Yoshihisa Fujiwara; Masahiko Tomishige; Yasuhiro Itoh; Masao Fujiwara; Naho Shibata; Toshikazu Kosaka; Hiroshi Hosoya; Yoshifumi Tanimoto
Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum was studied by using a superconducting magnet. Around a centre of a round vessel, random swimming at 0 T and aligned swimming parallel to the magnetic field (MF) of 8 T were observed. Near a wall of the vessel, however, swimming round and round along the wall at 0 T and aligned swimming of turning at right angles upon collision with the wall, which was remarkable around 1–4 T, were detected. It was experimentally revealed that the former MF-induced parallel swimming at the vessel centre was caused physicochemically by the parallel magnetic orientation of the cell itself. From magnetic field dependence of the extent of the orientation, the magnetic susceptibility anisotropy (χ ∥-χ ⊥) was first obtained to be 3.4× 10-23 emu cell−1 at 298 K for Paramecium caudatum. The orientation of the cell was considered to result from the magnetic orientation of the cell membrane. On the other hand, although mechanisms of the latter swimming near the vessel wall regardless of the absence and presence of the magnetic field are unclear at present, these experimental results indicate that whether the cell exists near the wall alters the magnetic field effect on the swimming in the horizontal magnetic field.