Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takashi Kumasaka is active.

Publication


Featured researches published by Takashi Kumasaka.


Nature | 2000

Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor.

Naoki Kunishima; Yoshimi Shimada; Yuji Tsuji; Toshihiro Sato; Masaki Yamamoto; Takashi Kumasaka; Shigetada Nakanishi; Hisato Jingami; Kosuke Morikawa

The metabotropic glutamate receptors (mGluRs) are key receptors in the modulation of excitatory synaptic transmission in the central nervous system. Here we have determined three different crystal structures of the extracellular ligand-binding region of mGluR1—in a complex with glutamate and in two unliganded forms. They all showed disulphide-linked homodimers, whose ‘active’ and ‘resting’ conformations are modulated through the dimeric interface by a packed α-helical structure. The bi-lobed protomer architectures flexibly change their domain arrangements to form an ‘open’ or ‘closed’ conformation. The structures imply that glutamate binding stabilizes both the ‘active’ dimer and the ‘closed’ protomer in dynamic equilibrium. Movements of the four domains in the dimer are likely to affect the separation of the transmembrane and intracellular regions, and thereby activate the receptor. This scheme in the initial receptor activation could be applied generally to G-protein-coupled neurotransmitter receptors that possess extracellular ligand-binding sites.


Nature | 2001

Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling

Fadel A. Samatey; Katsumi Imada; S. Nagashima; Ferenc Vonderviszt; Takashi Kumasaka; Masaki Yamamoto; Keiichi Namba

The bacterial flagellar filament is a helical propeller constructed from 11 protofilaments of a single protein, flagellin. The filament switches between left- and right-handed supercoiled forms when bacteria switch their swimming mode between running and tumbling. Supercoiling is produced by two different packing interactions of flagellin called L and R. In switching from L to R, the intersubunit distance (∼52 Å) along the protofilament decreases by 0.8 Å. Changes in the number of L and R protofilaments govern supercoiling of the filament. Here we report the 2.0 Å resolution crystal structure of a Salmonella flagellin fragment of relative molecular mass 41,300. The crystal contains pairs of antiparallel straight protofilaments with the R-type repeat. By simulated extension of the protofilament model, we have identified possible switch regions responsible for the bi-stable mechanical switch that generates the 0.8 Å difference in repeat distance.


Nature | 2012

Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel

Xu Zhang; Wenlin Ren; Paul G. DeCaen; Chuangye Yan; Xiao Tao; Lin(唐琳) Tang; Jingjing Wang; Kazuya Hasegawa; Takashi Kumasaka; Jianhua(何建华) He; Jiawei Wang; David E. Clapham; Nieng Yan

Voltage-gated sodium (Nav) channels are essential for the rapid depolarization of nerve and muscle, and are important drug targets. Determination of the structures of Nav channels will shed light on ion channel mechanisms and facilitate potential clinical applications. A family of bacterial Nav channels, exemplified by the Na+-selective channel of bacteria (NaChBac), provides a useful model system for structure–function analysis. Here we report the crystal structure of NavRh, a NaChBac orthologue from the marine alphaproteobacterium HIMB114 (Rickettsiales sp. HIMB114; denoted Rh), at 3.05 Å resolution. The channel comprises an asymmetric tetramer. The carbonyl oxygen atoms of Thr 178 and Leu 179 constitute an inner site within the selectivity filter where a hydrated Ca2+ resides in the crystal structure. The outer mouth of the Na+ selectivity filter, defined by Ser 181 and Glu 183, is closed, as is the activation gate at the intracellular side of the pore. The voltage sensors adopt a depolarized conformation in which all the gating charges are exposed to the extracellular environment. We propose that NavRh is in an ‘inactivated’ conformation. Comparison of NavRh with NavAb reveals considerable conformational rearrangements that may underlie the electromechanical coupling mechanism of voltage-gated channels.


Cell | 2001

Structural Analyses of DNA Recognition by the AML1/Runx-1 Runt Domain and Its Allosteric Control by CBFβ

Tahir H. Tahirov; Taiko Inoue-Bungo; Hisayuki Morii; Atsushi Fujikawa; Motoko Sasaki; Kazumi Kimura; Masaaki Shiina; Ko Sato; Takashi Kumasaka; Masaki Yamamoto; Shunsuke Ishii; Kazuhiro Ogata

The core binding factor (CBF) heterodimeric transcription factors comprised of AML/CBFA/PEBP2alpha/Runx and CBFbeta/PEBP2beta subunits are essential for differentiation of hematopoietic and bone cells, and their mutation is intimately related to the development of acute leukemias and cleidocranial dysplasia. Here, we present the crystal structures of the AML1/Runx-1/CBFalpha(Runt domain)-CBFbeta(core domain)-C/EBPbeta(bZip)-DNA, AML1/Runx-1/CBFalpha(Runt domain)-C/EBPbeta(bZip)-DNA, and AML1/Runx-1/CBFalpha(Runt domain)-DNA complexes. The hydrogen bonding network formed among CBFalpha(Runt domain) and CBFbeta, and CBFalpha(Runt domain) and DNA revealed the allosteric regulation mechanism of CBFalpha(Runt domain)-DNA binding by CBFbeta. The point mutations of CBFalpha related to the aforementioned diseases were also mapped and their effect on DNA binding is discussed.


Cell | 2002

Mechanism of c-Myb–C/EBPβ Cooperation from Separated Sites on a Promoter

Tahir H. Tahirov; Ko Sato; Emi Ichikawa-Iwata; Motoko Sasaki; Taiko Inoue-Bungo; Masaaki Shiina; Kazumi Kimura; Shioka Takata; Atsushi Fujikawa; Hisayuki Morii; Takashi Kumasaka; Masaki Yamamoto; Shunsuke Ishii; Kazuhiro Ogata

c-Myb, but not avian myeloblastosis virus (AMV) v-Myb, cooperates with C/EBPβ to regulate transcription of myeloid-specific genes. To assess the structural basis for that difference, we determined the crystal structures of complexes comprised of the c-Myb or AMV v-Myb DNA-binding domain (DBD), the C/EBPβ DBD, and a promoter DNA fragment. Within the c-Myb complex, a DNA-bound C/EBPβ interacts with R2 of c-Myb bound to a different DNA fragment; point mutations in v-Myb R2 eliminate such interaction within the v-Myb complex. GST pull-down assays, luciferase trans-activation assays, and atomic force microscopy confirmed that the interaction of c-Myb and C/EBPβ observed in crystal mimics their long range interaction on the promoter, which is accompanied by intervening DNA looping.


Proceedings of the National Academy of Sciences of the United States of America | 2013

In silico discovery of small-molecule Ras inhibitors that display antitumor activity by blocking the Ras–effector interaction

Fumi Shima; Yoko Yoshikawa; Min Ye; Mitsugu Araki; Shigeyuki Matsumoto; Jingling Liao; Lizhi Hu; Takeshi Sugimoto; Yuichi Ijiri; Azusa Takeda; Yuko Nishiyama; Chie Sato; Shin Muraoka; Atsuo Tamura; Tsutomu Osoda; Kenichiro Tsuda; Tomoya Miyakawa; Hiroaki Fukunishi; Jiro Shimada; Takashi Kumasaka; Masaki Yamamoto; Tohru Kataoka

Mutational activation of the Ras oncogene products (H-Ras, K-Ras, and N-Ras) is frequently observed in human cancers, making them promising anticancer drug targets. Nonetheless, no effective strategy has been available for the development of Ras inhibitors, partly owing to the absence of well-defined surface pockets suitable for drug binding. Only recently, such pockets have been found in the crystal structures of a unique conformation of Ras⋅GTP. Here we report the successful development of small-molecule Ras inhibitors by an in silico screen targeting a pocket found in the crystal structure of M-Ras⋅GTP carrying an H-Ras–type substitution P40D. The selected compound Kobe0065 and its analog Kobe2602 exhibit inhibitory activity toward H-Ras⋅GTP-c-Raf-1 binding both in vivo and in vitro. They effectively inhibit both anchorage-dependent and -independent growth and induce apoptosis of H-rasG12V–transformed NIH 3T3 cells, which is accompanied by down-regulation of downstream molecules such as MEK/ERK, Akt, and RalA as well as an upstream molecule, Son of sevenless. Moreover, they exhibit antitumor activity on a xenograft of human colon carcinoma SW480 cells carrying the K-rasG12V gene by oral administration. The NMR structure of a complex of the compound with H-Ras⋅GTPT35S, exclusively adopting the unique conformation, confirms its insertion into one of the surface pockets and provides a molecular basis for binding inhibition toward multiple Ras⋅GTP-interacting molecules. This study proves the effectiveness of our strategy for structure-based drug design to target Ras⋅GTP, and the resulting Kobe0065-family compounds may serve as a scaffold for the development of Ras inhibitors with higher potency and specificity.


The EMBO Journal | 2000

Crystal structure of a repair enzyme of oxidatively damaged DNA. MutM (FPG), from an extreme thermophile, Thermus thermophilus HB8

Mitsuaki Sugahara; Tsutomu Mikawa; Takashi Kumasaka; Masaki Yamamoto; Ryuichi Kato; Keiichi Fukuyama; Yorinao Inoue; Seiki Kuramitsu

The MutM [formamidopyrimidine DNA glycosylase (Fpg)] protein is a trifunctional DNA base excision repair enzyme that removes a wide range of oxidatively damaged bases (N‐glycosylase activity) and cleaves both the 3′‐ and 5′‐phosphodiester bonds of the resulting apurinic/apyrimidinic site (AP lyase activity). The crystal structure of MutM from an extreme thermophile, Thermus thermophilus HB8, was determined at 1.9 Å resolution with multiwavelength anomalous diffraction phasing using the intrinsic Zn2+ ion of the zinc finger. MutM is composed of two distinct and novel domains connected by a flexible hinge. There is a large, electrostatically positive cleft lined by highly conserved residues between the domains. On the basis of the three‐dimensional structure and taking account of previous biochemical experiments, we propose a DNA‐binding mode and reaction mechanism for MutM. The locations of the putative catalytic residues and the two DNA‐binding motifs (the zinc finger and the helix–two‐turns–helix motifs) suggest that the oxidized base is flipped out from double‐stranded DNA in the binding mode and excised by a catalytic mechanism similar to that of bifunctional base excision repair enzymes.


Structure | 2000

Crystal structure of N-carbamyl-d-amino acid amidohydrolase with a novel catalytic framework common to amidohydrolases

Takahisa Nakai; Tomokazu Hasegawa; Eiki Yamashita; Masaki Yamamoto; Takashi Kumasaka; Tatzuo Ueki; Hirokazu Nanba; Yasuhiro Ikenaka; Satomi Takahashi; Mamoru Sato; Tomitake Tsukihara

BACKGROUND N-carbamyl-D-amino acid amidohydrolase (DCase) catalyzes the hydrolysis of N-carbamyl-D-amino acids to the corresponding D-amino acids, which are useful intermediates in the preparation of beta-lactam antibiotics. To understand the catalytic mechanism of N-carbamyl-D-amino acid hydrolysis, the substrate specificity and thermostability of the enzyme, we have determined the structure of DCase from Agrobacterium sp. strain KNK712. RESULTS The crystal structure of DCase has been determined to 1.7 A resolution. The enzyme forms a homotetramer and each monomer consists of a variant of the alpha + beta fold. The topology of the enzyme comprises a sandwich of parallel beta sheets surrounded by two layers of alpha helices, this topology has not been observed in other amidohydrolases such as the N-terminal nucleophile (Ntn) hydrolases. CONCLUSIONS The catalytic center could be identified and consists of Glu46, Lys126 and Cys171. Cys171 was found to be the catalytic nucleophile, and its nucleophilic character appeared to be increased through general-base activation by Glu46. DCase shows only weak sequence similarity with a family of amidohydrolases, including beta-alanine synthase, aliphatic amidases and nitrilases, but might share highly conserved residues in a novel framework, which could provide a possible explanation for the catalytic mechanism for this family of enzymes.


Nature | 2016

Self-assembly of tetravalent Goldberg polyhedra from 144 small components

Daishi Fujita; Yoshihiro Ueda; Sota Sato; Nobuhiro Mizuno; Takashi Kumasaka; Makoto Fujita

Rational control of the self-assembly of large structures is one of the key challenges in chemistry, and is believed to become increasingly difficult and ultimately impossible as the number of components involved increases. So far, it has not been possible to design a self-assembled discrete molecule made up of more than 100 components. Such molecules—for example, spherical virus capsids—are prevalent in nature, which suggests that the difficulty in designing these very large self-assembled molecules is due to a lack of understanding of the underlying design principles. For example, the targeted assembly of a series of large spherical structures containing up to 30 palladium ions coordinated by up to 60 bent organic ligands was achieved by considering their topologies. Here we report the self-assembly of a spherical structure that also contains 30 palladium ions and 60 bent ligands, but belongs to a shape family that has not previously been observed experimentally. The new structure consists of a combination of 8 triangles and 24 squares, and has the symmetry of a tetravalent Goldberg polyhedron. Platonic and Archimedean solids have previously been prepared through self-assembly, as have trivalent Goldberg polyhedra, which occur naturally in the form of virus capsids and fullerenes. But tetravalent Goldberg polyhedra have not previously been reported at the molecular level, although their topologies have been predicted using graph theory. We use graph theory to predict the self-assembly of even larger tetravalent Goldberg polyhedra, which should be more stable, enabling another member of this polyhedron family to be assembled from 144 components: 48 palladium ions and 96 bent ligands.


Journal of Biological Chemistry | 2010

Structural Basis for Conformational Dynamics of GTP-bound Ras Protein

Fumi Shima; Yuichi Ijiri; Shin Muraoka; Jingling Liao; Min Ye; Mitsugu Araki; Kousuke Matsumoto; Naoki Yamamoto; Takeshi Sugimoto; Yoko Yoshikawa; Takashi Kumasaka; Masaki Yamamoto; Atsuo Tamura; Tohru Kataoka

Ras family small GTPases assume two interconverting conformations, “inactive” state 1 and “active” state 2, in their GTP-bound forms. Here, to clarify the mechanism of state transition, we have carried out x-ray crystal structure analyses of a series of mutant H-Ras and M-Ras in complex with guanosine 5′-(β,γ-imido)triphosphate (GppNHp), representing various intermediate states of the transition. Crystallization of H-RasT35S-GppNHp enables us to solve the first complete tertiary structure of H-Ras state 1 possessing two surface pockets unseen in the state 2 or H-Ras-GDP structure. Moreover, determination of the two distinct crystal structures of H-RasT35S-GppNHp, showing prominent polysterism in the switch I and switch II regions, reveals a pivotal role of the guanine nucleotide-mediated interaction between the two switch regions and its rearrangement by a nucleotide positional change in the state 2 to state 1 transition. Furthermore, the 31P NMR spectra and crystal structures of the GppNHp-bound forms of M-Ras mutants, carrying various H-Ras-type amino acid substitutions, also reveal the existence of a surface pocket in state 1 and support a similar mechanism based on the nucleotide-mediated interaction and its rearrangement in the state 1 to state 2 transition. Intriguingly, the conformational changes accompanying the state transition mimic those that occurred upon GDP/GTP exchange, indicating a common mechanistic basis inherent in the high flexibility of the switch regions. Collectively, these results clarify the structural features distinguishing the two states and provide new insights into the molecular basis for the state transition of Ras protein.

Collaboration


Dive into the Takashi Kumasaka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seiki Baba

Chiba Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Nobuo Tanaka

Kyoto Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge