Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takashi Machimura is active.

Publication


Featured researches published by Takashi Machimura.


Journal of Geophysical Research | 2005

Influence of forest clear‐cutting on the thermal and hydrological regime of the active layer near Yakutsk, eastern Siberia

Go Iwahana; Takashi Machimura; Yoshikazu Kobayashi; Alexander N. Fedorov; Pavel Konstantinov; Masami Fukuda

May to August were 44 and 69 MJ/m 2 in 1 year and 2 years after the clear-cutting, respectively) marked changes in the active layer conditions were limited only to the first thaw season. The correspondent differences in the active layer thickness between the sites were 16 and 14 cm in 2 years and 3 years, respectively. Further increases in the maximum thaw depth at the cutover site were inhibited by the thermal inertial effect of the larger amount of ice in the second spring after disturbance. This suggests a self-retention mechanism of the active layer thickness after forest disturbance in this continuous permafrost zone.


Journal of Geophysical Research | 2017

New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression

Kazuhito Ichii; Masahito Ueyama; Masayuki Kondo; Nobuko Saigusa; Joon Kim; Ma. Carmelita R. Alberto; Jonas Ardö; Eugénie S. Euskirchen; Minseok Kang; Takashi Hirano; Joanna Joiner; Hideki Kobayashi; Luca Belelli Marchesini; Lutz Merbold; Akira Miyata; Taku M. Saitoh; Kentaro Takagi; Andrej Varlagin; M. Syndonia Bret-Harte; Kenzo Kitamura; Yoshiko Kosugi; Ayumi Kotani; Kireet Kumar; Shenggong Li; Takashi Machimura; Yojiro Matsuura; Yasuko Mizoguchi; Takeshi Ohta; Sandipan Mukherjee; Yuji Yanagi

The lack of a standardized database of eddy covariance observations has been an obstacle for data-driven estimation of terrestrial CO2 fluxes in Asia. In this study, we developed such a standardized database using 54 sites from various databases by applying consistent postprocessing for data-driven estimation of gross primary productivity (GPP) and net ecosystem CO2 exchange (NEE). Data-driven estimation was conducted by using a machine learning algorithm: support vector regression (SVR), with remote sensing data for 2000 to 2015 period. Site-level evaluation of the estimated CO2 fluxes shows that although performance varies in different vegetation and climate classifications, GPP and NEE at 8days are reproduced (e.g., r2=0.73 and 0.42 for 8day GPP and NEE). Evaluation of spatially estimated GPP with Global Ozone Monitoring Experiment 2 sensor-based Sun-induced chlorophyll fluorescence shows that monthly GPP variations at subcontinental scale were reproduced by SVR (r2=1.00, 0.94, 0.91, and 0.89 for Siberia, East Asia, South Asia, and Southeast Asia, respectively). Evaluation of spatially estimated NEE with net atmosphere-land CO2 fluxes of Greenhouse Gases Observing Satellite (GOSAT) Level 4A product shows that monthly variations of these data were consistent in Siberia and East Asia; meanwhile, inconsistency was found in South Asia and Southeast Asia. Furthermore, differences in the land CO2 fluxes from SVR-NEE and GOSAT Level 4A were partially explained by accounting for the differences in the definition of land CO2 fluxes. These data-driven estimates can provide a new opportunity to assess CO2 fluxes in Asia and evaluate and constrain terrestrial ecosystem models. (Less)


Science of The Total Environment | 2017

Removal of heavy metals from synthetic landfill leachate in lab-scale vertical flow constructed wetlands

Dan A; Masao Oka; Yuta Fujii; Satoshi Soda; Tomonori Ishigaki; Takashi Machimura; Michihiko Ike

Synthetic landfill leachate was treated using lab-scale vertical flow constructed wetlands (CWs) in sequencing batch modes to assess heavy metal removal efficiencies. The CWs filled with loamy soil and pumice stone were unplanted or planted with common reed (Phragmites australis) (Reed-CW) or common rush (Juncus effusus) (Rush-CW). Synthetic leachate contained acetate, propionate, humate, ammonium, and heavy metals. Common reed grew almost vigorously but common rush partly withered during the 8-month experiment. The CWs reduced the leachate volume effectively by evapotranspiration and removed easily degradable organic matter, color, and ammonium. Furthermore, the CWs demonstrated high removal amounts for heavy metals such as Zn, Cr, Ni, Cd, Fe, and Pb, but not Mn from leachate. The metal removal amounts in the CWs were low for high-strength leachate (influent concentration increased from one time to three times) or under short retention time (batch cycle shortened from 3days to 1day). The Rush-CW showed slightly lower removal amounts for Cr, Ni, Mn, and Cd, although the Reed-CW showed lower Mn removal amounts than the unplanted CW did. However, Cd, Cr, Pb, Ni, and Zn were highly accumulated in the upper soil layer in the planted CW by rhizofiltration with adsorption compared with unplanted CW, indicating that the emergent plants would be helpful for decreasing the dredging soil depth for the final removal of heavy metals. Although the emergent plants were minor sinks in comparison with soil, common rush had higher bioconcentration factors and translocation factors for heavy metals than common reed had.


Science of The Total Environment | 2017

Removal of phenol, bisphenol A, and 4-tert-butylphenol from synthetic landfill leachate by vertical flow constructed wetlands.

Dan A; Daiki Fujii; Satoshi Soda; Takashi Machimura; Michihiko Ike

Lab-scale vertical flow constructed wetlands (CWs) were used to remove phenol, bisphenol A (BPA), and 4-tert-butylphenol (4-t-BP) from synthetic young and old leachate. Removal percentages of phenolic compounds from the CWs were in the following order: phenol (88-100%)>4-t-BP (18-100%)≥BPA (9-99%). In all CWs, phenol was removed almost completely from leachate. Results show that BPA and 4-t-BP were removed more efficiently from CWs planted with Phragmites australis than from unplanted CWs, from old leachate containing lower amounts of acetate and propionate as easily degradable carbon sources than from young leachate, and in the dry season mode with long retention time than in the wet season mode with short retention time. Adsorption by initial removal and subsequent biodegradation processes might be major removal processes for these phenolic compounds. The presence of plant is beneficial for enrichment of BPA-degrading and 4-t-BP-degrading bacteria and for the carbon source utilization potential of microbes in CWs.


International Journal of Environmental Technology and Management | 2010

Assessment of the challenge of sustainable recycling of municipal solid waste management in India

Anupam Khajuria; Takanori Matsui; Takashi Machimura; Tohru Morioka

Municipal solid waste management is one of the most serious and most neglected areas of urban development which create environmental hazards confronting municipalities. Qualitative analysis of municipal solid waste in India identified barriers or incentives for recycling, resulted in the development factors. The PSIR framework with sensitive analysis is approach towards the focus on sustainable development. Necessary and beneficial relationship drawn among development factors revealed the collaborative web model for sustainable municipal solid waste management. The functionality of other factors in collaborative relationship greatly influences the success of sustainable municipal solid waste management in developing countries as India.


Science of The Total Environment | 2017

Flow, stock, and impact assessment of refrigerants in the Japanese household air conditioner sector

Mianqiang Xue; Naoya Kojima; Takashi Machimura; Akihiro Tokai

Refrigerants provide society with great benefits while have the potential to cause adverse effects on the environment and human health. The present study estimated time-dependent flows and stocks and assessed the effects of refrigerants (R-22, R-410a, and R-32) in household air conditioners in Japan. It was found that stock of R-22 and R-410a peaked at 49,147t in 2000 and 55,994t in 2017, respectively. The largest flow of R-22 and R-410a to waste phase occurred at 3417t/yr. in 2005 and 4011t/yr. in 2023, respectively. The total global warming potential (GWP) due to refrigerant emissions increased from 3.6kt CO2 eq. in 1952 to 6999kt CO2 eq. in 2019, and then decreased to 5314kt CO2 eq. in 2030. The ozone depletion potential (ODP) peaked at 141t CFC-11 eq. in 2002. When substituting R-410a for R-22, the ODP decreased 50% while the GDP increased 8%. When substituting R-32 for R-410a, there was no effect on the ODP while the GDP decreased 6%. The human health damage due to the global warming effect of refrigerant emission was much higher than that due to the ozone depleting effect. The refrigerant emission in use and waste management phases dominated the human health damage. The dynamic estimation not only allows us to evaluate the performance of past policies but also supports the future sustainable management associated with the health effects of refrigerants.


Soil Science and Plant Nutrition | 2015

Spatial and seasonal variations of CO2 flux and photosynthetic and respiratory parameters of larch forests in East Asia

Kentaro Takagi; Ryuichi Hirata; Reiko Ide; Masahito Ueyama; Kazuhito Ichii; Nobuko Saigusa; Takashi Hirano; Jun Asanuma; Shenggong Li; Takashi Machimura; Yuichiro Nakai; Takeshi Ohta; Yoshiyuki Takahashi

Abstract Larch (Larix spp.) forests are predominantly distributed across high latitudes of Eurasia. They potentially have a strong influence on the terrestrial carbon and energy cycles, because of their vast area and the large carbon stocks in their peat soils in the permafrost. In this study, we elucidated intersite variation of ecosystem photosynthetic and respiratory parameters of eight larch forests in East Asia using the CarboEastAsia carbon flux and micrometeorology dataset. These parameters were determined using the empirical relationship between the carbon fluxes (photosynthesis and respiration) and micrometeorological variables (light and temperature). In addition, we examined leaf area index (LAI) determined by Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing data to explain the intersite variation. Linear or exponential relationships with annual mean temperature or seasonal maximum LAI at the study sites were found for the annual carbon fluxes (gross primary production [GPP] and total ecosystem respiration [RE]) as well as for four of the five seasonal maximum values of determined photosynthetic and respiratory parameters (maximum GPP at light saturation, initial slope of the light-response curve, daytime respiration, and RE at the reference temperature of 10°C). Phenological indices, such as start day of the growing season, growing season length and growing season degree days explained much of the intersite variation of GPP and RE of the studied larch forests; however, the relationship between MODIS LAI and photosynthetic or respiratory parameters implies that the intersite variation in GPP and RE was caused not only by the temperature variation (abiotic factor), but also by the variation in the photosynthetic and respiration activity by vegetation (biotic factor) through the change in leaf (or whole vegetation) biomass. Our analysis shows that MODIS LAI serves as a good index to explain the variation of the ecosystem photosynthetic and respiratory characteristics of East Asian larch forests.


Sustainability Science | 2018

Accounting shadow benefits of non-market food through food-sharing networks on Hachijo Island, Japan

Kana Tatebayashi; Chiho Kamiyama; Takanori Matsui; Osamu Saito; Takashi Machimura

People in rural areas often grow foods in their home gardens and share them through food-sharing networks. Besides the obvious economic benefits, such shared food via non-market transactions enriches the inhabitants’ lives by strengthening their social relationships and nutritional quality. These shadow benefits of non-market food are qualitatively recognized, but have not been fully integrated into formal accounting systems. Thus, the present study quantifies the shadow benefits of food-sharing networks by considering the non-market food distribution on Hachijo Island, Japan. Based on interviews and questionnaire surveys, we graphically visualized the structure of the food-sharing networks and the seasonality of the shared-food species. The study revealed the proportions of foods acquired through self-production, sharing networks and purchases by systematic food category, and quantified the monetary and nutritional values of the non-market foods. The island residents shared various seasonal foods within and beyond the island, and the non-market food was beneficial to their health. More than 20% of the islanders’ annual consumption of potatoes, vegetables, seafood, and fruits were obtained through the food-sharing networks. Non-market food largely saved the household expenditure and provided a wide variety of nutrients. As future perspectives of food-sharing networks, we suggest balancing market-based and non-market food provisions, promoting local production for local consumption, and designing local food resilience in disaster events.


Science of The Total Environment | 2019

Flows, stocks, and emissions of DEHP products in Japan

Leticia Sarmento dos Muchangos; Mianqiang Xue; Liang Zhou; Naoya Kojima; Takashi Machimura; Akihiro Tokai

The usage of products containing Bis (2‑ethylhexyl) Phthalate (DEHP) is widespread, mainly through the great variety of PVC products. However, DEHP has become a worldwide concern, due to the potential health and environmental risks it presents. In this study, material flow analysis and emission estimations for DEHP products in Japan, from 1948 to 2030, were performed. Moreover, an evaluation of the potentially damaging impacts on human health and the environment was completed through a lifecycle impact assessment approach. The analysis focused on three representative lifecycle phases - Production, Use and Treatment and Disposal. The peak flows of DEHP from Production to the Use phase were in 1996 with 285,300 tons for shipment and the stocks peaked in 2001 with 1,981,908 tons. Accordingly, in 2006 the peak of DEHP waste to the Treatment and disposal phase was 190,792 tons. The primary emissions were observed in the Use phase, due to the large stocks, with DEHP mostly being released to the pedosphere. The total emissions from the Use phase reached the maximum of 48,960 tons in 2000, whereas in the Production and Treatment and disposal phase it was 248 tons and 15 tons, respectively. Subsequently, concerning the evaluation of impacts, the damage to the human health was the most widespread impact, totaling 13,782 disability-adjusted life years (DALYs), compared with the damage to the ecosystems, with 0.12 species·year. Furthermore, the risk-risk tradeoffs between the lifecycle phases were clarified throughout the years.


Sustainability Science | 2018

Simulation of natural capital and ecosystem services in a watershed in Northern Japan focusing on the future underuse of nature: by linking forest landscape model and social scenarios

Chihiro Haga; Takahiro Inoue; Wataru Hotta; Rei Shibata; Shizuka Hashimoto; Hiroko Kurokawa; Takashi Machimura; Takanori Matsui; Junko Morimoto; Hideaki Shibata

A quantitative scenario approach to compare the future state of natural capital and ecosystem services (ESs) plays a key role in facilitating decision-making for the sustainable management of landscapes. In Japan, the shrinking and aging population will likely lead to a situation of underuse of natural resources, resulting in rewilding of terrestrial ecosystems. This study conducted a quantitative scenario analysis of natural capital and ESs by linking model and social scenarios on a local scale. The case study area was the Bekanbeushi River Watershed in Northern Japan. LANDIS-II model (a forest landscape model) was used to simulate the vegetation dynamics in species composition, age structure, and biomass considering impacts of forest and pasture land management. Four “population distribution” and “capital preference” scenarios were translated into forest and pasture land management. The population distribution and capital preference assumptions resulted in different consequences for natural capital and ESs. The population distribution affected the spatial allocation of abandoned pasture land and level of isolation of managed pasture land. The capital preference assumptions largely affected the consequences for ESs. Finally, these simulation results demonstrated the capacity to feed quantitative information to the narrative scenarios. Our process-based approach provides insight into the relationships among social drivers, ecological processes, and the consequences that will affect natural capital and ESs, which can contribute to decision-making and sustainability design of regions, which may face issues associated with underuse in the future.

Collaboration


Dive into the Takashi Machimura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Go Iwahana

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge