Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takashi Yamoto is active.

Publication


Featured researches published by Takashi Yamoto.


Toxicologic Pathology | 2009

Sensitivity of Liver Injury in Heterozygous Sod2 Knockout Mice Treated with Troglitazone or Acetaminophen

Kazunori Fujimoto; Kazuyoshi Kumagai; Kazumi Ito; Shingo Arakawa; Yosuke Ando; Sen-ichi Oda; Takashi Yamoto; Sunao Manabe

Recently, it was reported that the intraperitoneal administration of 30 mg/kg/day troglitazone to heterozygous superoxide dismutase 2 gene knockout (Sod2+/−) mice for twenty-eight days caused liver injury, manifested by increased serum ALT activity and hepatic necrosis. Therefore, we evaluated the reproducibility of troglitazone-induced liver injury in Sod2+/− mice, as well as their validity as an animal model with higher sensitivity to mitochondrial toxicity by single-dose treatment with acetaminophen in Sod2+/− mice. Although we conducted a repeated dose toxicity study in Sod2+/− mice treated orally with 300 mg/kg/day troglitazone for twenty-eight days, no hepatocellular necrosis was observed in our study. On the other hand, six hours and twenty-four hours after an administration of 300 mg/kg acetaminophen, plasma ALT activity was significantly increased in Sod2+/− mice, compared to wild-type mice. In particular, six hours after administration, hepatic centrilobular necrosis was observed only in Sod2+/− mice. These results suggest that Sod2+/− mice are valuable as an animal model with higher sensitivity to mitochondrial toxicity. On the other hand, it was suggested that the mitochondrial damage alone might not be the major cause of the troglitazone-induced idiosyncratic liver injury observed in humans.


Toxicological Sciences | 2010

Ethylene Glycol Monomethyl Ether–Induced Toxicity Is Mediated through the Inhibition of Flavoprotein Dehydrogenase Enzyme Family

Makoto Takei; Yosuke Ando; Wataru Saitoh; Tomoe Tanimoto; Naoki Kiyosawa; Sunao Manabe; Atsushi Sanbuissho; Osamu Okazaki; Haruo Iwabuchi; Takashi Yamoto; Klaus-Peter Adam; James E. Weiel; John A. Ryals; Michael V. Milburn; Lining Guo

Ethylene glycol monomethyl ether (EGME) is a widely used industrial solvent known to cause adverse effects to human and other mammals. Organs with high metabolism and rapid cell division, such as testes, are especially sensitive to its actions. In order to gain mechanistic understanding of EGME-induced toxicity, an untargeted metabolomic analysis was performed in rats. Male rats were administrated with EGME at 30 and 100 mg/kg/day. At days 1, 4, and 14, serum, urine, liver, and testes were collected for analysis. Testicular injury was observed at day 14 of the 100 mg/kg/day group only. Nearly 1900 metabolites across the four matrices were profiled using liquid chromatography-mass spectrometry/mass spectrometry and gas chromatography-mass spectrometry. Statistical analysis indicated that the most significant metabolic perturbations initiated from the early time points by EGME were the inhibition of choline oxidation, branched-chain amino acid catabolism, and fatty acid β-oxidation pathways, leading to the accumulation of sarcosine, dimethylglycine, and various carnitine- and glycine-conjugated metabolites. Pathway mapping of these altered metabolites revealed that all the disrupted steps were catalyzed by enzymes in the primary flavoprotein dehydrogenase family, suggesting that inhibition of flavoprotein dehydrogenase–catalyzed reactions may represent the mode of action for EGME-induced toxicity. Similar urinary and serum metabolite signatures are known to be the hallmarks of multiple acyl-coenzyme A dehydrogenase deficiency in humans, a genetic disorder because of defects in primary flavoprotein dehydrogenase reactions. We postulate that disruption of key biochemical pathways utilizing flavoprotein dehydrogenases in conjugation with downstream metabolic perturbations collectively result in the EGME-induced tissue damage.


Drug Metabolism and Disposition | 2006

Characterization of phenotypes in Gstm1-null mice by cytosolic and in vivo metabolic studies using 1,2-dichloro-4-nitrobenzene.

Kazunori Fujimoto; Shingo Arakawa; Yukari Shibaya; Hiroaki Miida; Yosuke Ando; Hiroaki Yasumo; Ayako Hara; Minoru Uchiyama; Haruo Iwabuchi; Wataru Takasaki; Sunao Manabe; Takashi Yamoto

Glutathione S-transferase Mu 1 (GSTM1) has been regarded as one of the key enzymes involved in phase II reactions in the liver, because of its high expression level. In this study, we generated mice with disrupted glutathione S-transferase Mu 1 gene (Gstm1-null mice) by gene targeting, and characterized the phenotypes by cytosolic and in vivo studies. The resulting Gstm1-null mice appeared to be normal and were fertile. Expression analyses for the Gstm1-null mice revealed a deletion of Gstm1 mRNA and a small decrease in glutathione S-transferase alpha 3 mRNA. In the enzymatic study, GST activities toward 1,2-dichloro-4-nitrobenzene (DCNB) and 1-chloro-2,4-dinitrobenzene (CDNB) in the liver and kidney cytosols were markedly lower in Gstm1-null mice than in the wild-type control. Gstm1-null mice had GST activities of only 6.1 to 21.0% of the wild-type control to DCNB and 26.0 to 78.6% of the wild-type control to CDNB. After a single oral administration of DCNB to Gstm1-null mice, the plasma concentration of DCNB showed larger AUC0–24 (5.1–5.3 times, versus the wild-type control) and higher Cmax (2.1–2.2 times, versus the wild-type control), with a correspondingly lower level of glutathione-related metabolite (AUC0–24, 9.4–17.9%; and Cmax, 9.7–15.6% of the wild-type control). In conclusion, Gstm1-null mice showed markedly low ability for glutathione conjugation to DCNB in the cytosol and in vivo and would be useful as a deficient model of GSTM1 for absorption, distribution, metabolism, and excretion/toxicology studies.


Drug Metabolism and Disposition | 2007

Generation and functional characterization of mice with a disrupted glutathione S-transferase, theta 1 gene.

Kazunori Fujimoto; Shingo Arakawa; Toshiyuki Watanabe; Hiroaki Yasumo; Yosuke Ando; Wataru Takasaki; Sunao Manabe; Takashi Yamoto; Sen-ichi Oda

Glutathione S-transferase (GST) theta 1 (GSTT1) has been regarded as one of the key enzymes involved in phase II reactions because of its unique substrate specificity. In this study, we generated mice with the disrupted Gstt1 gene (Gstt1-null mice) by gene targeting and analyzed the metabolic properties in cytosolic and in vivo studies. The resulting Gstt1-null mice failed to express the Gstt1 mRNA and GSTT1 protein by reverse transcriptase-polymerase chain reaction analysis and two-dimensional fluorescence difference gel electrophoresis/mass spectrometry analysis, respectively. However, the Gstt1-null mice appeared to be normal and were fertile. In an enzymatic study using cytosolic samples from the liver and kidney, GST activity toward 1,2-epoxy-3-(p-nitrophenoxy)propane (EPNP), dichloromethane (DCM), and 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) was markedly lower in Gstt1-null mice than in the wild-type controls, despite there being no difference in GST activity toward 1-choloro-2,4-dinitrobenzene between Gstt1-null mice and the wild-type controls. Gstt1-null mice had GST activity of only 8.7 to 42.1% of the wild-type controls to EPNP, less than 2.2% of the wild-type controls to DCM, and 13.2 to 23.9% of the wild-type controls to BCNU. Plasma BCNU concentrations after a single i.p. administration of BCNU to Gstt1-null mice were significantly higher, and there was a larger area under the curve5–60 min (male, 2.30 times; female, 2.28 times, versus the wild-type controls) based on the results. In conclusion, Gstt1-null mice would be useful as an animal model of humans with the GSTT1-null genotype.


Experimental and Toxicologic Pathology | 2004

Gene expression profiles in pregnant rats treated with T-2 toxin

Shinya Sehata; Naoki Kiyosawa; Kyoko Sakuma; Kazumi Ito; Takashi Yamoto; Munehiro Teranishi; Koji Uetsuka; Hiroyuki Nakayama; Kunio Doi

Pregnant rats on day 13 of gestation were treated orally with T-2 toxin at a single dose of 2 mg/kg and sacrificed at 24 hours after treatment. Histopathologically, apoptosis was increased in the liver, placenta and fetal liver. Microarray analysis was performed to examine the gene expression in the liver, placenta, and fetal liver. The results of microarray analysis showed that the changes in the expression of apoptosis genes, metabolic enzymes and oxidative stress-related genes were detected in these tissues. Suppression of phase I and II enzymes-related genes expression in the liver, and suppression of phase II enzymes-related genes expression in the placenta and fetal liver were observed. Semiquantitive RT-PCR analysis also showed the same results as those of microarray analysis. From the results of microarray analysis and histopathological examination, T-2 toxin seems to induce oxidative stress in these tissues, following the changes in metabolism-related genes expression. These changes may alter the intracellular environments resulting in the induction of apoptosis. Further studies on the gene expression profiles at the earlier time point are necessary to clarify the detailed mechanisms of T-2 toxin-induced toxicity in pregnant rats.


International Journal of Molecular Sciences | 2010

Practical Application of Toxicogenomics for Profiling Toxicant-Induced Biological Perturbations

Naoki Kiyosawa; Sunao Manabe; Takashi Yamoto; Atsushi Sanbuissho

A systems-level understanding of molecular perturbations is crucial for evaluating chemical-induced toxicity risks appropriately, and for this purpose comprehensive gene expression analysis or toxicogenomics investigation is highly advantageous. The recent accumulation of toxicity-associated gene sets (toxicogenomic biomarkers), enrichment in public or commercial large-scale microarray database and availability of open-source software resources facilitate our utilization of the toxicogenomic data. However, toxicologists, who are usually not experts in computational sciences, tend to be overwhelmed by the gigantic amount of data. In this paper we present practical applications of toxicogenomics by utilizing biomarker gene sets and a simple scoring method by which overall gene set-level expression changes can be evaluated efficiently. Results from the gene set-level analysis are not only an easy interpretation of toxicological significance compared with individual gene-level profiling, but also are thought to be suitable for cross-platform or cross-institutional toxicogenomics data analysis. Enrichment in toxicogenomics databases, refinements of biomarker gene sets and scoring algorithms and the development of user-friendly integrative software will lead to better evaluation of toxicant-elicited biological perturbations.


Journal of Toxicologic Pathology | 2009

Toxicogenomic Biomarkers for Liver Toxicity

Naoki Kiyosawa; Yosuke Ando; Sunao Manabe; Takashi Yamoto

Toxicogenomics (TGx) is a widely used technique in the preclinical stage of drug development to investigate the molecular mechanisms of toxicity. A number of candidate TGx biomarkers have now been identified and are utilized for both assessing and predicting toxicities. Further accumulation of novel TGx biomarkers will lead to more efficient, appropriate and cost effective drug risk assessment, reinforcing the paradigm of the conventional toxicology system with a more profound understanding of the molecular mechanisms of drug-induced toxicity. In this paper, we overview some practical strategies as well as obstacles for identifying and utilizing TGx biomarkers based on microarray analysis. Since clinical hepatotoxicity is one of the major causes of drug development attrition, the liver has been the best documented target organ for TGx studies to date, and we therefore focused on information from liver TGx studies. In this review, we summarize the current resources in the literature in regard to TGx studies of the liver, from which toxicologists could extract potential TGx biomarker gene sets for better hepatotoxicity risk assessment.


Toxicology Letters | 2009

Scoring multiple toxicological endpoints using a toxicogenomic database

Naoki Kiyosawa; Yosuke Ando; Kyoko Watanabe; Noriyo Niino; Sunao Manabe; Takashi Yamoto

As information regarding microarray data sets and toxicogenomic biomarkers grows rapidly, the process of analyzing data and interpreting the results is increasingly complicated. To facilitate data analysis, a simple expression ratio-based scoring method called the TGP1 score was previously proposed [Kiyosawa, N., Shiwaku, K., Hirode, M., Omura, K., Uehara, T., Shimizu, T., Mizukawa, Y., Miyagishima, T., Ono, A., Nagao, T., Urushidani, T., 2006. Utilization of a one-dimensional score for surveying chemical-induced changes in expression levels of multiple biomarker gene sets using a large-scale toxicogenomics database. J. Toxicol. Sci. 31, 433-448]. Although the TGP1 score has demonstrated its efficacy for rapid comprehension of large-scale toxicogenomic data sets, inclusion of low quality gene expression data in the biomarker gene set produced flaws in the calculated score. To overcome this shortcoming, we tested a new scoring method called the differentially expressed gene score (D-score), where Detection Call as well as signal log ratios generated by MAS5 algorithm on Affymetrix GeneChip data were considered for the calculation. Four prototypical toxicants, namely acetaminophen, phenobarbital, clofibrate and acetamidofluorene, were used for detailed analysis. A toxicogenomics database (TG-GATEs) was utilized as a reference data set. The D-score successfully alleviated the effects of low quality data on the score calculation, and captured the overall direction of expression changes as well as the magnitude of expression change level of a set of genes, highlighting the affected toxicological endpoints elicited by chemical treatment. The D-score will be useful for high-throughput toxicity screening using a toxicogenomic database and biomarkers.


Genomics | 2010

Gene set-level network analysis using a toxicogenomics database

Naoki Kiyosawa; Sunao Manabe; Atsushi Sanbuissho; Takashi Yamoto

Toxicogenomics data sets on rat livers covering 118 compounds were subjected to inference of a gene set-level, not individual gene-level, network structure. Expression changing levels for 58 gene sets was used for network inference with a Gaussian graphical model algorithm. The established network contained reasonable relationships, such as ones between the blood glucose level and glycolysis-related genes or the blood transaminase level and cellular injury-related genes, indicating that the gene set-level network inference successfully highlighted biological pathway-level interactions. In addition, the robustness of the inferred network structure was investigated using microarray data on bromobenzene-treated rat livers, where the gene set-level activation exhibited time-dependent propagation through neighbored nodes (i.e. gene sets) on the network, indicating that the network structure was robust and comparable with an external microarray data set. Accumulating such robust gene sets with toxicity-associated subnetwork structures would lead to a better understanding of the molecular mechanisms of drug-elicited toxicities.


Chemico-Biological Interactions | 2010

In vitro cytotoxicity assay to evaluate the toxicity of an electrophilic reactive metabolite using glutathione-depleted rat primary cultured hepatocytes.

Kazunori Fujimoto; Hiroyuki Kishino; Takashi Yamoto; Sunao Manabe; Atsushi Sanbuissho

Glutathione plays an important role as not only a scavenger of reactive oxygen species but also in the conjugation or detoxification of electrophilic reactive metabolites, which has been thought to be one of the causes for idiosyncratic drug toxicity (IDT). Therefore, toxic responses to the reactive metabolites have been expected to be expressed more strongly in a glutathione-depleted condition. In the present study, we attempted to establish an in vitro cytotoxicity assay method to evaluate the toxicity of the reactive metabolite using rat primary cultured hepatocytes with cellular glutathione depletion by l-buthionine-S,R-sulfoximine. Also, we investigated whether the IDT risk is predictable by comparing the cytotoxic sensitivity between glutathione-depleted hepatocytes and untreated hepatocytes. Consequently, 10 drugs of 42 approved drugs, which were classified into 4 IDT categories (Withdrawn, Black box warning, Warning, and Safe), demonstrated higher cytotoxic sensitivity in the glutathione-depleted hepatocytes. Furthermore, a correlation was observed between the incidence of drugs with higher cytotoxic sensitivity in the glutathione-depleted hepatocytes and the IDT risk. The incidence was 50% in the Withdrawn category, 38% in the Black box warning category, 22% in the Warning category, and 8% in the Safe category. These results suggest that the IDT risk of some drugs may be predicted by comparing the cytotoxic sensitivity between them. Additionally, this method may be useful as a screening in the early stage of drug development where leads/candidates are optimized.

Collaboration


Dive into the Takashi Yamoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge