Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takayuki Kawato is active.

Publication


Featured researches published by Takayuki Kawato.


Journal of Clinical Microbiology | 2003

Analysis of Loci Required for Determination of Serotype Antigenicity in Streptococcus mutans and Its Clinical Utilization

Yukie Shibata; Kazuhisa Ozaki; Mitsuko Seki; Takayuki Kawato; Hideki Tanaka; Yoshio Nakano; Yoshihisa Yamashita

ABSTRACT We recently identified the genes responsible for the serotype c-specific glucose side chain formation of rhamnose-glucose polysaccharide (RGP) in Streptococcus mutans. These genes were located downstream from the rgpA through rgpF locus that is involved in the synthesis of RGP. In the present study, the corresponding chromosomal regions were isolated from serotype e and f strains and characterized. The rgpA through rgpF homologs were well conserved among the three serotypes. By contrast, the regions downstream from the rgpF homolog differed considerably among the three serotypes. Replacement of these regions in the different serotype strains converted their serotypic phenotypes, suggesting that these regions participated in serotype-specific glucose side chain formation in each serotype strain. Based on the differences among the DNA sequences of these regions, a PCR method was developed to determine serotypes. S. mutans was isolated from 198 of 432 preschool children (3 to 4 years old). The serotypes of all but one S. mutans isolate were identified by serotyping PCR. Serotype c predominated (84.8%), serotype e was the next most common (13.3%), and serotype f occured rarely (1.9%) in Japanese preschool children. Caries experience in the group with a mixed infection by multiple serotypes of S. mutans was significantly higher than that in the group with a monoinfection by a single serotype.


Archives of Oral Biology | 2009

Effects of nicotine and lipopolysaccharide on the expression of matrix metalloproteinases, plasminogen activators, and their inhibitors in human osteoblasts

Tomoko Katono; Takayuki Kawato; Natsuko Tanabe; Hideki Tanaka; Naoto Suzuki; Satoshi Kitami; Toyoko Morita; Masafumi Motohashi; Masao Maeno

OBJECTIVE Lipopolysaccharide (LPS) from periodontopathic bacteria can initiate alveolar bone loss through the induction of host-derived cytokines. Smoking increases the risk and severity of periodontitis. We examined the effects of nicotine and LPS on the expression of matrix metalloproteinases (MMPs), plasminogen activators (PAs), and their inhibitors, including tissue inhibitors of metalloproteinases (TIMPs) and PA inhibitor-1 (PAI-1), in osteoblasts. METHODS The cells were cultured with or without 10(-4) M nicotine and 100 ng/ml LPS for 12 days or with 100 microg/ml polymyxin B, 10(-4) M D-tubocurarine, 10 micromol/ml NS398, or 10(-6) M celecoxib in the presence of either nicotine or LPS for 12 days. The gene and protein expression levels for MMPs, PAs, TIMPs, and PAI-1 were examined using real-time PCR and ELISAs, respectively. PGE(2) production was determined using an ELISA. RESULTS The addition of nicotine and/or LPS to the culture medium increased the expression of MMP-1, -2, and -3 and tissue-type PA (tPA); decreased the expression of TIMP-1, -3, and -4; and did not affect expression of TIMP-2 or PAI-1. In the presence of d-tubocurarine or polymyxin B, neither nicotine nor LPS stimulated the expression of MMP-1. In the presence of NS398 or celecoxib, the stimulatory effects of nicotine and LPS on MMP-1 expression were unchanged, but they were unable to stimulate PGE(2) production. CONCLUSION These results suggest that nicotine and LPS stimulate the resorption process that occurs during turnover of osteoid by increasing the production of MMPs and tPA and by decreasing the production of TIMPs. Furthermore, they suggest that the stimulatory effect of nicotine and LPS on PGE(2) production is independent of their stimulatory effect on MMP-1 expression.


Archives of Oral Biology | 2008

Sodium butyrate stimulates mineralized nodule formation and osteoprotegerin expression by human osteoblasts

Tomoko Katono; Takayuki Kawato; Natsuko Tanabe; Naoto Suzuki; Takafumi Iida; Akira Morozumi; Kuniyasu Ochiai; Masao Maeno

OBJECTIVE Butyric acid (sodium butyrate; BA) is a major metabolic by-product of main periodontopathic bacteria present in subgingival plaque. In the present study, we examined the effects of BA on cell proliferation, alkaline phosphatase (ALPase) activity, mineralized nodule formation, extracellular matrix protein expression, macrophage colony-stimulating factor (M-CSF), and osteoprotegerin (OPG) in normal human osteoblasts. METHODS The cells were cultured with 0, 10(-8), 10(-6) or 10(-4)M BA for up to 12 days. Mineralized nodule formation was detected by alizarin red staining, and the calcium content in mineralized nodules was determined using a calcium assay kit. The gene and protein expression levels for type I collagen, bone sialoprotein (BSP), osteopontin (OPN), M-CSF, and OPG were examined using real-time PCR and ELISA, respectively. RESULTS Mineralized nodule formation and the calcium content of mineralized nodules were increased by BA in a dose-dependent manner. Cell proliferation and ALPase activity were not affected by the addition of BA. Following the addition of 10(-4)M BA, the expression levels of BSP, OPN, and OPG increased, whereas the expression levels of type I collagen and M-CSF were not markedly affected. CONCLUSION These results suggest that BA stimulates bone formation by increasing the production of BSP and OPN, whereas it suppresses osteoclast differentiation by increasing the production of OPG by human osteoblasts.


Connective Tissue Research | 2007

Effects of IL-6 and soluble IL-6 receptor on the expression of cartilage matrix proteins in human chondrocytes.

Aki Namba; Yukiko Aida; Naoto Suzuki; Yusuke Watanabe; Takayuki Kawato; Masafumi Motohashi; Masao Maeno; Hideo Matsumura; Mitsuhiko Matsumoto

Elevated concentrations of interleukin (IL)-6 and soluble IL-6 receptor (sIL-6Rα) in synovial fluid have been implicated in joint cartilage destruction. We examined the effect of IL-6 and sIL-6Rα on cell growth, alkaline phosphatase (ALPase) activity, and the expression of Sox-9, type II collagen, aggrecan core, link protein, BMP-7, and BMP receptors in human chondrocytes. Cell proliferation increased slightly in the presence of both IL-6 and sIL-6Rα, whereas ALPase activity decreased markedly. The expression of Sox-9 and aggrecan core did not change in the presence or absence of IL-6 and sIL-6Rα, whereas the expression of type II collagen, link protein, BMP-7, and BMP receptors increased in the presence of both IL-6 and sIL-6Rα. These results suggest that IL-6 and sIL-6Rα suppress the differentiation of chondrocytes and induce the repair of arthrodial cartilage through an increase in the expression of cartilage matrix proteins, BMP-7, and BMP receptors in the cells.


PLOS ONE | 2013

Nicotine Affects Bone Resorption and Suppresses the Expression of Cathepsin K, MMP-9 and Vacuolar-Type H+-ATPase d2 and Actin Organization in Osteoclasts

Hideki Tanaka; Natsuko Tanabe; Takayuki Kawato; Kumiko Nakai; Taro Kariya; Sakurako Matsumoto; Ning Zhao; Masafumi Motohashi; Masao Maeno

Tobacco smoking is an important risk factor for the development of several cancers, osteoporosis, and inflammatory diseases such as periodontitis. Nicotine is one of the major components of tobacco. In previous study, we showed that nicotine inhibits mineralized nodule formation by osteoblasts, and the culture medium from osteoblasts containing nicotine and lipopolysaccharide increases osteoclast differentiation. However, the direct effect of nicotine on the differentiation and function of osteoclasts is poorly understood. Thus, we examined the direct effects of nicotine on the expression of nicotine receptors and bone resorption-related enzymes, mineral resorption, actin organization, and bone resorption using RAW264.7 cells and bone marrow cells as osteoclast precursors. Cells were cultured with 10−5, 10−4, or 10−3 M nicotine and/or 50 µM α-bungarotoxin (btx), an 7 nicotine receptor antagonist, in differentiation medium containing the soluble RANKL for up 7 days. 1–5, 7, 9, and 10 nicotine receptors were expressed on RAW264.7 cells. The expression of 7 nicotine receptor was increased by the addition of nicotine. Nicotine suppressed the number of tartrate-resistant acid phosphatase positive multinuclear osteoclasts with large nuclei(≥10 nuclei), and decreased the planar area of each cell. Nicotine decreased expression of cathepsin K, MMP-9, and V-ATPase d2. Btx inhibited nicotine effects. Nicotine increased CA II expression although decreased the expression of V-ATPase d2 and the distribution of F-actin. Nicotine suppressed the planar area of resorption pit by osteoclasts, but did not affect mineral resorption. These results suggest that nicotine increased the number of osteoclasts with small nuclei, but suppressed the number of osteoclasts with large nuclei. Moreover, nicotine reduced the planar area of resorption pit by suppressing the number of osteoclasts with large nuclei, V-ATPase d2, cathepsin K and MMP-9 expression and actin organization.


Journal of Cellular Biochemistry | 2015

Tension force-induced ATP promotes osteogenesis through P2X7 receptor in osteoblasts.

Taro Kariya; Natsuko Tanabe; Chieko Shionome; Soichiro Manaka; Takayuki Kawato; Ning Zhao; Masao Maeno; Naoto Suzuki; Noriyoshi Shimizu

Orthodontic tooth movement induces alveolar bone resorption and formation by mechanical stimuli. Force exerted on the traction side promotes bone formation. Adenosine triphosphate (ATP) is one of the key mediators that respond to bone cells by mechanical stimuli. However, the effect of tension force (TF)‐induced ATP on osteogenesis is inadequately understood. Accordingly, we investigated the effect of TF on ATP production and osteogenesis in MC3T3‐E1 cells. Cells were incubated in the presence or absence of P2X7 receptor antagonist A438079, and then stimulated with or without cyclic TF (6% or 18%) for a maximum of 24 h using Flexercell Strain Unit 3000. TF significantly increased extracellular ATP release compared to control. Six percent TF had maximum effect on ATP release compared to 18% TF and control. Six percent TF induced the expression of Runx2 and Osterix. Six percent TF also increased the expression of extracellular matrix proteins (ECMPs), ALP activity, and the calcium content in ECM. A438079 blocked the stimulatory effect of 6% TF on the expression of Runx2, Osterix and ECMPs, ALP activity, and calcium content in ECM. This study indicated that TF‐induced extracellular ATP is released in osteoblasts, suggesting that TF‐induced ATP promotes osteogenesis by autocrine action through P2X7 receptor in osteoblasts. J. Cell. Biochem. 116: 12–21, 2015.


Biochimie | 2013

Angiotensin II induces the production of MMP-3 and MMP-13 through the MAPK signaling pathways via the AT1 receptor in osteoblasts

Kumiko Nakai; Takayuki Kawato; Toyoko Morita; Toshimitsu Iinuma; Noriaki Kamio; Ning Zhao; Masao Maeno

Angiotensin II (Ang II) plays an important role in the maintenance of bone mass and integrity by activation of the mitogen-activated protein kinases (MAPKs) and by modulation of balance between resorption by osteoclasts and formation by osteoblasts. However, the role of Ang II in the turnover of extracellular matrix (ECM) in osteoid by osteoblasts remains unclear. Therefore, we examined the effect of Ang II on the expression of matrix metalloproteinases (MMPs), plasminogen activators (PAs), and their inhibitors [i.e., tissue inhibitors of metalloproteinases (TIMPs) and PA inhibitor-1 (PAI-1)] using osteoblastic ROS17/2.8 cells. Treatment with Ang II strikingly increased the expressions of MMP-3 and -13 and promoted cell proliferation associated with reduced alkaline phosphatase activity as well as enhanced phosphorylated expression of extracellular signal-regulated kinase (ERK)1/2, p38 MAPK, and stress-activated protein kinases/c-jun N-terminal kinases (SAPK/JNK) in ROS17/2.8 cells. However, Ang II had no effect on the expression of MMP-2, -9, -14, urokinase-type PA, tissue-type PA, TIMP-1, -2, -3, and PAI-1 in cells. Losartan (AT1 receptor blocker) blocked Ang II-induced expression of MMP-3 and -13, whereas PD123319 (AT2 receptor blocker) did not completely block these responses. Losartan also blocked the Ang II-induced phosphorylation of ERK1/2, p38 MAPK, and SAPK/JNK. MAPK kinase 1/2 inhibitor PD98059 and JNK inhibitor SP600125 suppressed Ang II-induced expression of MMP-3 and -13. These results suggested that Ang II stimulated the degradation process that occurs during ECM turnover in osteoid by increasing the production of MMP-3 and -13 through MAPK signaling pathways via the AT1 receptor in osteoblasts. Furthermore, our findings suggest that Ang II does not influence the plasminogen/plasmin pathway in osteoblasts.


Connective Tissue Research | 2013

Vaspin Attenuates RANKL-Induced Osteoclast Formation in RAW264.7 Cells

Noriaki Kamio; Takayuki Kawato; Natsuko Tanabe; Satoshi Kitami; Toyoko Morita; Kuniyasu Ochiai; Masao Maeno

Visceral adipose tissue-derived serine protease inhibitor (vaspin), an adipokine that was recently identified in a rat model of type 2 diabetes, has been suggested to have an insulin-sensitizing effect. In this study, we investigated whether vaspin inhibits receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis using two types of osteoclast precursors: RAW264.7 cells and bone marrow cells (BMCs). Vaspin inhibited RANKL-induced osteoclastogenesis in RAW264.7 cells and BMCs. Interestingly, vaspin also inhibited the RANKL-induced expression of nuclear factor of activated T cells c1 (NFATc1) in RAW264.7 cells and BMCs. Furthermore, it inhibited the RANKL-induced upregulation of matrix metalloproteinase-9 and cathepsin K in RAW264.7 cells. Thus, we suggest that vaspin downregulates osteoclastogenesis in part by inhibiting expression of the transcription factor NFATc1.


Cytokine | 2011

Interleukin-17F affects cartilage matrix turnover by increasing the expression of collagenases and stromelysin-1 and by decreasing the expression of their inhibitors and extracellular matrix components in chondrocytes.

Shihoko Tanigawa; Yukiko Aida; Takayuki Kawato; Kazuhiro Honda; Go Nakayama; Masafumi Motohashi; Naoto Suzuki; Kuniyasu Ochiai; Hideo Matsumura; Masao Maeno

Interleukin (IL)-17, a proinflammatory cytokine, is produced primarily by activated Th17 cells. IL-17 consists of six ligands that signal through five receptors (IL-17Rs); IL-17A and IL-17F share the highest homology in the family. Matrix metalloproteinases (MMPs) degrade the extracellular matrix during cartilage remodeling whereas tissue inhibitor of metalloproteinases (TIMPs) inhibit the action of MMPs. In the present study, we examined the effect of IL-17F on the degradation and synthesis of the extracellular matrix in cartilage using human articular chondrocytes. We examined the effect of IL-17F on the expression of IL-17Rs, MMPs, TIMPs, type II collagen, aggrecan, link protein, and cyclooxygenases (COXs), as well as on prostaglandin E2 (PGE2) production. We also examined the indirect effect of PGE2 on the above IL-17F-induced/reduced components using NS-398, a specific inhibitor of COX-2. Cells were cultured with or without IL-17F in the presence or absence of either an IL-17R antibody or NS-398 for up to 28 days. Expression of IL-17Rs, MMPs, TIMPs, type II collagen, aggrecan, link protein, and COXs at mRNA and protein levels was determined using real-time polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA), respectively. PGE2 production was determined by ELISA. The expression of all types of IL-17Rs was detected in chondrocytes. However, IL-17RE expression was extremely low, compared with other IL-17Rs. The expression of MMP-1, MMP-3, MMP-13, and COX-2 as well as PGE2 production were increased by addition of IL-17F, whereas the expression of IL-17RD, TIMP-2, TIMP-4, type II collagen, aggrecan, link protein, and COX-1 was decreased. The expression of IL-17RA, IL-17RB, IL-17RC, MMP-2, MMP-14, TIMP-1, and TIMP-3 was unaffected by addition of IL-17F. The IL-17R antibody blocked the stimulating/reducing effect of IL-17F on the expression of MMP-1, MMP-3, MMP-13, TIMP-2, TIMP-4, type II collagen, aggrecan, and link protein. NS-398 blocked the reducing effect of IL-17F on aggrecan expression, whereas it did not completely block the stimulating/reducing effects of IL-17F on the expression of MMP-1, MMP-3, MMP-13, TIMP-2, TIMP-4, type II collagen, and link protein. Our results suggest that IL-17F stimulates cartilage degradation by increasing the expression of collagenases (MMP-1 and -13) and stromelysin-1 (MMP-3) and by decreasing expression of their inhibitors (TIMP-2 and -4), type II collagen, aggrecan, and link protein in chondrocytes. Furthermore, our results suggest that the expression of aggrecan, link protein, and TIMP-4 decrease through the autocrine action of PGE2 in chondrocytes.


International Dental Journal | 2011

Effect of xylitol gum on the level of oral mutans streptococci of preschoolers: block-randomised trial.

Mitsuko Seki; Fumiyuki Karakama; Takayuki Kawato; Hideki Tanaka; Yoji Saeki; Yoshihisa Yamashita

OBJECTIVES To assess the influence of xylitol chewing gum consumption on mutans streptococci level of 3-4 years old Japanese preschoolers. METHODS 248 participants were examined regarding caries-related factors at baseline and were followed up at 6, 9, and 12 months after the baseline: assessors were blinded, subjects were open labelled and blocked parallel randomised; 142 were selected to use xylitol gum for 3 months (from months 6 to 9) and 106 were controls. RESULTS 161 participants were analysed (xylitol n = 76, control n = 85). Nineteen caries-related variables, including xylitol gum consumption, were analysed for any association with the main outcome, plaque mutans streptococci scores development within the intervention period, by logistic regression. Six showed statistically significant associations by univariate analysis (P < 0.05). However, only xylitol gum consumption remained a significant negative association (P < 0.05) by multiple analyses. Interestingly, over 10% xylitol group children experienced diarrhoea, which was larger than previous investigations. CONCLUSION   Xylitol gum is effective in avoiding increased plaque mutans streptococci in young children.

Collaboration


Dive into the Takayuki Kawato's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge