Takayuki Motoyama
University of Tokyo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Takayuki Motoyama.
Phytopathology | 2002
Michiyo Oshima; Makoto Fujimura; Shinpei Banno; Chigusa Hashimoto; Takayuki Motoyama; Akihiko Ichiishi; Isamu Yamaguchi
ABSTRACT Partial DNA fragments of Botrytis cinerea field isolates encoding the putative osmosensor histidine kinase gene (BcOS1) were cloned by polymerase chain reaction amplification and the predicted amino acid sequences were compared between dicarboximide-sensitive and resistant field isolates. The predicted BcOS1p is highly homologous to osmosensor histidine kinase OS1p from Neurospora crassa including the N-terminal six tandem repeats of approximately 90 amino acids. Four dicarboximide-resistant isolates of B. cinerea (Bc-19, Bc-45, Bc-682, and Bc-RKR) contained a single base pair mutation in their BcOS1 gene that resulted in an amino acid substitution in the predicted protein. In these resistant isolates, codon 86 of the second repeat, which encodes an isoleucine residue in sensitive strains, was converted to a codon for serine. The mutation of Botrytis field resistant isolates was located on the second unit of tandem amino acid repeats of BcOS1p, whereas the point mutations of the fifth repeat of OS1p confer resistance to both dicarboximides and phenylpyrroles and also osmotic sensitivity in Neurospora crassa. These results suggest that an amino acid substitution within the second repeat of BcOS1p is responsible for phenotypes of field resistant isolates (resistant to dicarboximides but sensitive to phenylpyrroles, and normal osmotic sensitivity) in B. cinerea.
Molecular Genetics and Genomics | 1996
Takayuki Motoyama; M. C. Fujiwara; Nobuko Kojima; Hiroyuki Horiuchi; Akinori Ohta; Masamichi Takagi
We previously isolated three chitin synthase genes (chsA, chsB, andchsC) fromAspergillus nidulans. In the present work, we describe the isolation and characterization of another chitin synthase gene, namedchsD, fromA. nidulans. Its deduced amino acid sequence shows 56.7% and 55.9% amino acid identity, respectively, with Cal1 ofSaccharomyces cerevisiae and Chs3 ofCandida albicans. Disruption ofchsD caused no defect in cell growth or morphology during the asexual cycle and caused no decrease in chitin content in hyphae. However, double disruption ofchsA andchsD caused a remarkable decrease in the efficiency of conidia formation, while double disruption ofchsC andchsD caused no defect. Thus it appears thatchsA andchsD serve redundant functions in conidia formation.
Bioscience, Biotechnology, and Biochemistry | 2003
Makoto Fujimura; Noriyuki Ochiai; Michiyo Oshima; Takayuki Motoyama; Akihiko Ichiishi; Ron Usami; Koki Horikoshi; Isamu Yamaguchi
We cloned and characterized Neurospora NcSSK22 and NcPBS2 genes, similar to yeast SSK22 mitogen-activated protein (MAP) kinase kinase kinase and the PBS2 MAP kinase kinase genes, respectively. Disruptants of the NcSSK22 gene were sensitive to osmotic stress and resistant to iprodione and fludioxonil. Their phenotypes were similar to those of osmotic-sensitive (os) mutants os-1, os-2, os-4, and os-5. The os-4 mutant strain transformed with the wild-type NcSSK22 gene grew on a medium containing 4% NaCl and was sensitive to iprodione and fludioxonil. In contrast, the NcPBS2 gene complemented the osmotic sensitivity and fungicide resistance of the os-5 mutant strain. We sequenced the NcPBS2 gene of the os-5 mutant strain (NM216o) and found five nucleotides deleted within the kinase domain. This result suggests that the gene products of os-4 and os-5 are components of the MAP kinase cascade, which is probably regulated upstream by two-component histidine kinase encoded by the os-1/nik1 gene.
Current Genetics | 2005
Takayuki Motoyama; Tomohiro Ohira; Kaori Kadokura; Akihiko Ichiishi; Makoto Fujimura; Isamu Yamaguchi; Toshiaki Kudo
Three groups of fungicides (phenylpyrroles, dicarboximides, aromatic hydrocarbons) are effective against filamentous fungi. The target of these fungicides is the osmotic stress signal transduction pathway, which is dependent on the Os-1 family of two-component histidine kinases. These fungicides usually have no fungicidal effect on the yeast Saccharomyces cerevisiae. In this report, we found that expression of Hik1, an Os-1 orthologue from rice blast fungus, can confer fungicide-sensitivity to yeast. This requires both the histidine kinase and the response regulator domains of Hik1. Analysis of yeast mutants indicated that this sensitivity is Hog1- and Ssk1-dependent. In addition, our studies revealed an interaction between Hik1 and Ypd1. These observations suggest that Hik1 is a direct target of the fungicides or is a mediator of fungicide action and that the fungicidal effect is transmitted to the Hog1 pathway via Ypd1.
Current Genetics | 2008
Takayuki Motoyama; Naoko Ochiai; Masumi Morita; Yuki Iida; Ron Usami; Toshiaki Kudo
Rice blast fungus (Magnaporthe oryzae) has ten histidine kinases (HKs), one histidine-containing phosphotransfer protein (HPt), and three response regulators (RRs) as putative components of the two-component signal transduction system (TCS). Here, we constructed knockout mutants of two putative RR genes (MoSSK1, MoSKN7) and a RR homolog gene (MoRIM15) to analyze the roles of TCS in environmental adaptation and pathogenicity. The ΔMossk1 strain had increased sensitivity to high osmolarity and decreased sensitivity to fludioxonil. The ΔMoskn7 strain had slightly decreased sensitivity to fludioxonil. The involvement of MoSkn7 in the osmoresponse was obvious only on the ΔMossk1 background. These results show that MoSsk1 and MoSkn7 are major and minor contributors, respectively, in the high osmolarity response and fludioxonil action. The ΔMossk1 strain was more osmosensitive than the predicted upstream HK gene disruptant Δhik1, which shows sugar-specific high osmolarity sensitivity. The ΔMossk1 and ΔMoskn7 strains showed enhanced hyphal melanization, suggesting that RRs regulate hyphal melanization. MoSsk1 and MoRim15 are required for full virulence, because the ΔMossk1 and ΔMorim15 strains exhibited reduced virulence. These results suggest that the putative RRs of the rice blast fungus are involved in the osmotic stress response, fludioxonil action, and pathogenicity.
Bioscience, Biotechnology, and Biochemistry | 2002
Noriyuki Ochiai; Makoto Fujimura; Michiyo Oshima; Takayuki Motoyama; Akihiko Ichiishi; Hisafumi Yamada-Okabe; Isamu Yamaguchi
We investigated the effects of iprodione and fludioxonil on the pathogenic yeast Candida albicans. Growth of the wild-type IFO1385 strain of C. albicans was inhibited by both fungicides, while Saccharomyces cerevisiae was basically unaffected by them even at a concentration of 25 μg/ml. Both fungicides stimulated glycerol synthesis in C. albicans but not in S. cerevisiae. The antioxidant α-tocopherol acetate and the cytochrome P-450 inhibitor piperonyl butoxide antagonized the fungitoxicity of iprodione and fludioxonil in C. albicans. It is known that mutations within the histidine kinase NIK1/OS-1 gene confer resistance to iprodione and fludioxonil in Neurospora crassa, while the fungicide-insensitive S. cerevisiae has only one histidine kinase SLN1 gene in its genome. In contrast, C. albicans has three histidine kinase genes, namely CaSLN1, CaNIK1/COS1, and CaHK1, the null mutants of which were found to impair the hyphal formation. Iprodione and fludioxonil were found to suppress filamentation when the IFO1385 strain was incubated on a solid medium containing fetal bovine serum. These observations suggest that iprodione and fludioxonil interfere with the CaNIK1/COS1 signal transduction pathway, resulting in glycerol synthesis stimulation and the inhibition of hyphal formation.
Phytopathology | 2005
Ryo Ishikawa; Kentaro Shirouzu; Hideo Nakashita; Han-Young Lee; Takayuki Motoyama; Isamu Yamaguchi; Tohru Teraoka; Tsutomu Arie
ABSTRACT Tomato wilt, caused by the soilborne fungus Fusarium oxysporum f. sp. lycopersici, is effectively controlled by a foliar spray of validamycin A (VMA) or validoxylamine A (VAA) (>/=10 mug/ml); however, neither VMA nor VAA is antifungal in vitro. In pot tests, the effect of a foliar application of VMA or VAA at 100 mug/ml lasted for 64 days. Plants sprayed with VMA or VAA accumulated salicylic acid and had elevated expression of the systemic acquired resistance (SAR) marker genes P4 (PR-1), Tag (PR-2), and NP24 (PR-5). Foliar spray of VMA also controlled late blight and powdery mildew of tomato. The disease control by VMA and VAA lasted up to 64 days after treatment, was broad spectrum, and induced the expression of PR genes, all essential indicators of SAR, suggesting that VMA and VAA are plant activators. The foliar application of plant activators is a novel control method for soilborne diseases and may provide an economically feasible alternative to soil fumigants such as methyl bromide.
Microbiology | 2002
Masayuki Ichinomiya; Takayuki Motoyama; M. C. Fujiwara; Masamichi Takagi; Hiroyuki Horiuchi; Akinori Ohta
The functions of two previously identified chitin synthase genes in Aspergillus nidulans, chsB and chsD, were analysed. First, a conditional chsB mutant was constructed in which the expression of chsB is under the control of a repressible promoter, the alcA promoter, of A. nidulans. Under repressing conditions, the mutant grew slowly and produced highly branched hyphae, supporting the idea that chsB is involved in normal hyphal growth. The involvement of chsB in conidiation was also demonstrated. Next, double mutants of chsB and chsD were constructed, in which chsB was placed under the control of the alcA promoter and chsD was replaced with the argB gene of A. nidulans. These double mutants grew more slowly than the chsB single mutant under high-osmolarity conditions. The hyphae of the double mutant appeared to be more disorganized than those of the chsB single mutant. It was also found that ChsD was functionally implicated in conidiation when the expression of chsB was limited. These results indicate the importance of the ChsD function in the absence of chsB expression. The roles of ChsB and ChsD in hyphal growth and in conidiation were supported by the analysis of the spatial expression patterns of chsB and chsD, using lacZ of Escherichia coli as a reporter gene.
Antimicrobial Agents and Chemotherapy | 2007
Leandro Vetcher; Hugo G. Menzella; Toshiaki Kudo; Takayuki Motoyama; Leonard Katz
ABSTRACT The polyketide ambruticin is an attractive candidate for drug development as an antifungal agent, but its mechanism of action has not yet been elucidated. Here we present evidence that ambruticin exerts its effect by targeting HOG, the osmotic stress control pathway, through Hik1, a group III histidine kinase.
Nature Communications | 2015
Choong-Soo Yun; Takayuki Motoyama
Tenuazonic acid (TeA) is a well-known mycotoxin produced by various plant pathogenic fungi. However, its biosynthetic gene has been unknown to date. Here we identify the TeA biosynthetic gene from Magnaporthe oryzae by finding two TeA-inducing conditions of a low-producing strain. We demonstrate that TeA is synthesized from isoleucine and acetoacetyl-coenzyme A by TeA synthetase 1 (TAS1). TAS1 is a unique non-ribosomal peptide synthetase and polyketide synthase (NRPS–PKS) hybrid enzyme that begins with an NRPS module. In contrast to other NRPS/PKS hybrid enzymes, the PKS portion of TAS1 has only a ketosynthase (KS) domain and this domain is indispensable for TAS1 activity. Phylogenetic analysis classifies this KS domain as an independent clade close to type I PKS KS domain. We demonstrate that the TAS1 KS domain conducts the final cyclization step for TeA release. These results indicate that TAS1 is a unique type of NRPS–PKS hybrid enzyme.