Takefumi Uemura
Fukushima Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Takefumi Uemura.
Journal of Cell Biology | 2011
Takashi Itoh; Eiko Kanno; Takefumi Uemura; Satoshi Waguri; Mitsunori Fukuda
The GAP activity of OATL1, which is recruited to autophagosomes by Atg8, regulates autophagosome–lysosome fusion.
Nature | 2013
Giovanni D’Angelo; Takefumi Uemura; Chia-Chen Chuang; Elena V. Polishchuk; Michele Santoro; Henna Ohvo-Rekilä; Takashi Sato; Giuseppe Di Tullio; Antonio Varriale; Sabato D’Auria; Tiziana Daniele; Fabrizio Capuani; Ludger Johannes; Peter Mattjus; Maria Chiara Monti; Piero Pucci; Roger Williams; John E. Burke; Frances M. Platt; Akihiro Harada; Maria Antonietta De Matteis
Newly synthesized proteins and lipids are transported across the Golgi complex via different mechanisms whose respective roles are not completely clear. We previously identified a non-vesicular intra-Golgi transport pathway for glucosylceramide (GlcCer)—the common precursor of the different series of glycosphingolipids—that is operated by the cytosolic GlcCer-transfer protein FAPP2 (also known as PLEKHA8) (ref. 1). However, the molecular determinants of the FAPP2-mediated transfer of GlcCer from the cis-Golgi to the trans-Golgi network, as well as the physiological relevance of maintaining two parallel transport pathways of GlcCer—vesicular and non-vesicular—through the Golgi, remain poorly defined. Here, using mouse and cell models, we clarify the molecular mechanisms underlying the intra-Golgi vectorial transfer of GlcCer by FAPP2 and show that GlcCer is channelled by vesicular and non-vesicular transport to two topologically distinct glycosylation tracks in the Golgi cisternae and the trans-Golgi network, respectively. Our results indicate that the transport modality across the Golgi complex is a key determinant for the glycosylation pattern of a cargo and establish a new paradigm for the branching of the glycosphingolipid synthetic pathway.
Journal of Cell Biology | 2010
Ryo Misaki; Miki Morimatsu; Takefumi Uemura; Satoshi Waguri; Eiji Miyoshi; Naoyuki Taniguchi; Michiyuki Matsuda; Tomohiko Taguchi
Palmitoylation directs Ras proteins to the correct intracellular organelles for trafficking and activity.
Molecular and Cellular Biology | 2014
Takefumi Uemura; Masaya Yamamoto; Ai Kametaka; Yu-shin Sou; Atsuko Yabashi; Akane Yamada; Hiromichi Annoh; Satoshi Kametaka; Masaaki Komatsu; Satoshi Waguri
ABSTRACT Recent findings have suggested that the autophagic isolation membrane (IM) might originate from a domain of the endoplasmic reticulum (ER) called the omegasome. However, the morphological relationships between ER, omegasome, and IM remain unclear. In the present study, we found that hybrid structures composed of a double FYVE domain-containing protein 1 (DFCP1)-positive omegasome and the IM accumulated in Atg3-deficient mouse embryonic fibroblasts (MEFs). Moreover, correlative light and electron microscopy and immunoelectron microscopy revealed that green fluorescent protein (GFP)-tagged DFCP1 was localized on tubular or vesicular elements adjacent to the IM rims. Through detailed morphological analyses, including optimization of a fixation method and electron tomography, we observed a cluster of thin tubular structures between the IM edges and ER, part of which were continuous with IM and/or ER. The formation of these thin tubular clusters was observed in several cell lines and MEFs deficient for Atg5, Atg7, or Atg16L1 but not in FIP200-deficient cells, suggesting that they were relevant to the earlier events in autophagosome formation. Taken together, our findings indicate that these tubular profiles represent a part of the omegasome that links the ER with the IM.
Journal of Biological Chemistry | 2014
Shun Kageyama; Yu-shin Sou; Takefumi Uemura; Satoshi Kametaka; Tetsuya Saito; Ryosuke Ishimura; Tsuguka Kouno; Lynn Bedford; R. John Mayer; Myung-Shik Lee; Masayuki Yamamoto; Satoshi Waguri; Keiji Tanaka; Masaaki Komatsu
Background: Malfunctions in the ubiquitin-proteasome system cause accumulation of non-functional, potentially toxic protein aggregates. Results: The protein aggregates activate Nrf2 and are then excluded by autophagy in vivo. Conclusion: Both Nrf2 and autophagy serve as in vivo cellular adaptations to impaired proteasome. Significance: Cells contain networks of cellular defense mechanisms against defective proteostasis. The ubiquitin-proteasome system and autophagy are crucially important for proteostasis in cells. These pathways are interdependent, and dysfunction in either pathway causes accumulation of ubiquitin-positive aggregates, a hallmark of human pathological conditions. To elucidate in vivo compensatory action(s) against proteasomal dysfunction, we developed mice with reduced proteasome activity in their livers. The mutant mice exhibited severe liver damage, accompanied by formation of aggregates positive for ubiquitin and p62/Sqstm1, an adaptor protein for both selective autophagy and the anti-oxidative Keap1-Nrf2 pathway. These aggregates were selectively entrapped by autophagosomes, and pathological features of livers with impaired proteasome activity were exacerbated by simultaneous suppression of autophagy. In contrast, concomitant loss of p62/Sqstm1 had no apparent effect on the liver pathology though p62/Sqstm1 was indispensable for the aggregates formation. Furthermore, defective proteasome function led to transcriptional activation of the Nrf2, which served as a physiological adaptation. Our in vivo data suggest that cells contain networks of cellular defense mechanisms against defective proteostasis.
Nature Communications | 2016
Tetsuya Saito; Yoshinobu Ichimura; Keiko Taguchi; Takafumi Suzuki; Tsunehiro Mizushima; Kenji Takagi; Yuki Hirose; Masayuki Nagahashi; Tetsuro Iso; Toshiaki Fukutomi; Maki Ohishi; Keiko Endo; Takefumi Uemura; Yasumasa Nishito; Shujiro Okuda; Miki Obata; Tsuguka Kouno; Riyo Imamura; Yukio Tada; Rika Obata; Daisuke Yasuda; Kyoko Takahashi; Tsutomu Fujimura; Jingbo Pi; Myung-Shik Lee; Takashi Ueno; Tomoyuki Ohe; Tadahiko Mashino; Toshifumi Wakai; Hirotatsu Kojima
p62/Sqstm1 is a multifunctional protein involved in cell survival, growth and death, that is degraded by autophagy. Amplification of the p62/Sqstm1 gene, and aberrant accumulation and phosphorylation of p62/Sqstm1, have been implicated in tumour development. Herein, we reveal the molecular mechanism of p62/Sqstm1-dependent malignant progression, and suggest that molecular targeting of p62/Sqstm1 represents a potential chemotherapeutic approach against hepatocellular carcinoma (HCC). Phosphorylation of p62/Sqstm1 at Ser349 directs glucose to the glucuronate pathway, and glutamine towards glutathione synthesis through activation of the transcription factor Nrf2. These changes provide HCC cells with tolerance to anti-cancer drugs and proliferation potency. Phosphorylated p62/Sqstm1 accumulates in tumour regions positive for hepatitis C virus (HCV). An inhibitor of phosphorylated p62-dependent Nrf2 activation suppresses the proliferation and anticancer agent tolerance of HCC. Our data indicate that this Nrf2 inhibitor could be used to make cancer cells less resistant to anticancer drugs, especially in HCV-positive HCC patients.
Molecular Biology of the Cell | 2012
Koutaro Ishibashi; Takefumi Uemura; Satoshi Waguri; Mitsunori Fukuda
Atg16L1, a protein essential for autophagy, is localized on dense-core vesicles in PC12 cells, and knockdown of Atg16L1 inhibits hormone secretion independently of autophagy. In addition, Atg16L1 interacts with the small GTPase Rab33A, and this interaction is required for the dense-core vesicle localization of Atg16L1.
Nature Communications | 2016
Kojiro Mukai; Hiroyasu Konno; Tatsuya Akiba; Takefumi Uemura; Satoshi Waguri; Toshihide Kobayashi; Glen N. Barber; Hiroyuki Arai; Tomohiko Taguchi
Stimulator of interferon genes (STING) is essential for the type I interferon response against DNA pathogens. In response to the presence of DNA and/or cyclic dinucleotides, STING translocates from the endoplasmic reticulum to perinuclear compartments. However, the role of this subcellular translocation remains poorly defined. Here we show that palmitoylation of STING at the Golgi is essential for activation of STING. Treatment with palmitoylation inhibitor 2-bromopalmitate (2-BP) suppresses palmitoylation of STING and abolishes the type I interferon response. Mutation of two membrane-proximal Cys residues (Cys88/91) suppresses palmitoylation, and this STING mutant cannot induce STING-dependent host defense genes. STING variants that constitutively induce the type I interferon response were found in patients with autoimmune diseases. The response elicited by these STING variants is effectively inhibited by 2-BP or an introduction of Cys88/91Ser mutation. Our results may lead to new treatments for cytosolic DNA-triggered autoinflammatory diseases.
Molecular and Cellular Biology | 2009
Takefumi Uemura; Takashi Sato; Takehiro Aoki; Akitsugu Yamamoto; Tetsuya Okada; Rika Hirai; Reiko Harada; Kazutoshi Mori; Mitsuo Tagaya; Akihiro Harada
ABSTRACT p31, the mammalian orthologue of yeast Use1p, is an endoplasmic reticulum (ER)-localized soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) that forms a complex with other SNAREs, particularly syntaxin 18. However, the role of p31 in ER function remains unknown. To determine the role of p31 in vivo, we generated p31 conditional knockout mice. We found that homozygous deletion of the p31 gene led to early embryonic lethality before embryonic day 8.5. Conditional knockout of p31 in brains and mouse embryonic fibroblasts (MEFs) caused massive apoptosis accompanied by upregulation of ER stress-associated genes. Microscopic analysis showed vesiculation and subsequent enlargement of the ER membrane in p31-deficient cells. This type of drastic disorganization in the ER tubules has not been demonstrated to date. This marked change in ER structure preceded nuclear translocation of the ER stress-related transcription factor C/EBP homologous protein (CHOP), suggesting that ER stress-induced apoptosis resulted from disruption of the ER membrane structure. Taken together, these results suggest that p31 is an essential molecule involved in the maintenance of ER morphology and that its deficiency leads to ER stress-induced apoptosis.
Journal of Cell Science | 2015
Atsushi Eino; Shun Kageyama; Takefumi Uemura; Hiromichi Annoh; Tetsuya Saito; Ichiei Narita; Satoshi Waguri; Masaaki Komatsu
ABSTRACT Sqstm1 serves as a signaling hub and receptor for selective autophagy. Consequently, dysregulation of Sqstm1 causes imbalances in signaling pathways and disrupts proteostasis, thereby contributing to the development of human diseases. Environmental stresses influence the level of Sqstm1 by altering its expression and/or autophagic degradation, and also changes the localization of Sqstm1, making it difficult to elucidate the actions and roles of this protein. In this study, we developed knock-in mice expressing Sqstm1 fused to GFP (Sqstm1-GFPKI/+). Using these Sqstm1-GFPKI/+ mice, we revealed for the first time the dynamics of endogenous Sqstm1 in living cells. Sqstm1–GFP was translocated to a restricted area of LC3-positive structures, which primarily correspond to the inside of autophagosomes, and then degraded. Moreover, exposure to arsenite induced expression of Sqstm1–GFP, followed by accumulation of the fusion protein in large aggregates that were degraded by autophagy. Furthermore, suppression of autophagy in Sqstm1-GFPKI/+ mouse livers caused accumulation of Sqstm1–GFP and formation of GFP-positive aggregate structures, leading to severe hepatic failure. These results indicate that Sqstm1-GFPKI/+ mice are a useful tool for analyzing Sqstm1 in living cells and intact animals. Highlighted Article: We have developed Sqstm1-GFP knock-in mice, which are useful for elucidating the molecular mechanisms of cellular events, including autophagy, and various diseases in which Sqstm1 plays a role.