Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takehiko Kenzaka is active.

Publication


Featured researches published by Takehiko Kenzaka.


Applied and Environmental Microbiology | 2003

Detection of Bacteria Carrying the stx2 Gene by In Situ Loop-Mediated Isothermal Amplification

Fumito Maruyama; Takehiko Kenzaka; Nobuyasu Yamaguchi; Katsuji Tani; Masao Nasu

ABSTRACT A new in situ DNA amplification technique for microscopic detection of bacteria carrying a specific gene is described. Loop-mediated isothermal amplification (LAMP) was used to detect stxA2 in Escherichia coli O157:H7 cells. The mild permeabilization conditions and low isothermal temperature used in the in situ LAMP method caused less cell damage than in situ PCR. It allowed use of fluorescent antibody labeling in the bacterial mixture after the DNA amplification for identification of E. coli O157:H7 cells with an stxA2 gene. Higher-contrast images were obtained with this method than with in situ PCR.


The ISME Journal | 2010

High-frequency phage-mediated gene transfer in freshwater environments determined at single-cell level

Takehiko Kenzaka; Katsuji Tani; Masao Nasu

Lateral gene transfer by phages has contributed significantly to the genetic diversity of bacteria. To accurately determine the frequency and range of phage-mediated gene transfer, it is important to understand the movement of DNA among microbes. Using an in situ DNA amplification technique (cycling primed in situ amplification-fluorescent in situ hybridization; CPRINS-FISH), we examined the propensity for phage-mediated gene transfer in freshwater environments at the single-cell level. Phage P1, T4 and isolated Escherichia coli phage EC10 were used as vectors. All E. coli phages mediated gene transfer from E. coli to both plaque-forming and non-plaque-forming Enterobacteriaceae strains at frequencies of 0.3–8 × 10−3 per plaque-forming unit (PFU), whereas culture methods using selective agar media could not detect transductants in non-plaque-forming strains. The DNA transfer frequencies through phage EC10 ranged from undetectable to 9 × 10−2 per PFU (undetectable to 2 × 10−3 per total direct count) when natural bacterial communities were recipients. Direct viable counting combined with CPRINS-FISH revealed that more than 20% of the cells carrying the transferred gene retained their viability in most cases. These results indicate that the exchange of DNA sequences among bacteria occurs frequently and in a wide range of bacteria, and may promote rapid evolution of the prokaryotic genome in freshwater environments.


Microbial Ecology | 2006

Genetic and Physiological Characterization of the Intestinal Bacterial Microbiota of Bluegill (Lepomis macrochirus) with Three Different Feeding Habits

Kimiko Uchii; Kazuaki Matsui; Ryuji Yonekura; Katsuji Tani; Takehiko Kenzaka; Masao Nasu; Zen’ichiro Kawabata

Bluegill (Lepomis macrochirus) in Lake Biwa, Japan, feed on benthic invertebrates (benthivorous type), aquatic plants (herbivorous type), and zooplankton (planktivorous type). To evaluate the effect of food on intestinal bacterial microbiota, we characterized and compared the intestinal microbiota of these three types of bluegill in terms of community-level physiological profile (CLPP) and genetic structure. The CLPP was analyzed using Biolog MicroPlates (Biolog, Inc., Hayward, CA, USA), and multivariate analysis of variance revealed that the CLPP of intestinal microbiota differed significantly between any pairs of the three types of bluegill. The genetic profiles were analyzed by temperature gradient gel electrophoresis of polymerase chain reaction (PCR)-amplified 16S rDNA fragments, and multidimensional scaling indicated the existence of specific intestinal bacterial structures for both the benthivorous and the planktivorous types. These results suggest that the hosts feeding habit can be one factor controlling the intestinal microbiota of fish in the natural environment.


Applied and Environmental Microbiology | 2005

Visualization and Enumeration of Bacteria Carrying a Specific Gene Sequence by In Situ Rolling Circle Amplification

Fumito Maruyama; Takehiko Kenzaka; Nobuyasu Yamaguchi; Katsuji Tani; Masao Nasu

ABSTRACT Rolling circle amplification (RCA) generates large single-stranded and tandem repeats of target DNA as amplicons. This technique was applied to in situ nucleic acid amplification (in situ RCA) to visualize and count single Escherichia coli cells carrying a specific gene sequence. The method features (i) one short target sequence (35 to 39 bp) that allows specific detection; (ii) maintaining constant fluorescent intensity of positive cells permeabilized extensively after amplicon detection by fluorescence in situ hybridization, which facilitates the detection of target bacteria in various physiological states; and (iii) reliable enumeration of target bacteria by concentration on a gelatin-coated membrane filter. To test our approach, the presence of the following genes were visualized by in situ RCA: green fluorescent protein gene, the ampicillin resistance gene and the replication origin region on multicopy pUC19 plasmid, as well as the single-copy Shiga-like toxin gene on chromosomes inside E. coli cells. Fluorescent antibody staining after in situ RCA also simultaneously identified cells harboring target genes and determined the specificity of in situ RCA. E. coli cells in a nonculturable state from a prolonged incubation were periodically sampled and used for plasmid uptake study. The numbers of cells taking up plasmids determined by in situ RCA was up to 106-fold higher than that measured by selective plating. In addition, in situ RCA allowed the detection of cells taking up plasmids even when colony-forming cells were not detected during the incubation period. By optimizing the cell permeabilization condition for in situ RCA, this method can become a valuable tool for studying free DNA uptake, especially in nonculturable bacteria.


Applied and Environmental Microbiology | 2005

rRNA Sequence-Based Scanning Electron Microscopic Detection of Bacteria

Takehiko Kenzaka; Ai Ishidoshiro; Nobuyasu Yamaguchi; Katsuji Tani; Masao Nasu

ABSTRACT A new scanning electron microscopic method was developed for gaining both phylogenetic and morphological information about target microbes using in situ hybridization with rRNA-targeted oligonucleotide probes (SEM-ISH). Target cells were hybridized with oligonucleotide probes after gold labeling. Gold enhancement was used for amplification of probe signals from hybridized cells. The hybridized cells released a strong backscatter electron signal due to accumulation of gold atoms inside cells. SEM-ISH was applied to analyze bacterial community composition in freshwater samples, and bacterial cell counts determined by SEM-ISH with rRNA-targeted probes for major phyla within the domain Bacteria were highly correlated to those by fluorescent in situ hybridization (FISH). The bacterial composition on surface of river sediment particles before and after cell dispersion treatment by sonication was successfully revealed by SEM-ISH. Direct enumeration of bacterial cells on the surface of sonicated sediment particles by SEM-ISH demonstrated that members of Cytophaga-Flavobacterium existed tightly on the surface of particles. SEM-ISH allows defining the number and distribution of phylogenetically defined cells adherent to material surfaces, which is difficult in FISH, and it gives new insight into electron microscopic studies of microorganisms in their natural environment.


Applied and Environmental Microbiology | 2005

Recognition of Individual Genes in Diverse Microorganisms by Cycling Primed In Situ Amplification

Takehiko Kenzaka; Shigeru Tamaki; Nobuyasu Yamaguchi; Katsuji Tani; Masao Nasu

ABSTRACT Cycling primed in situ amplification-fluorescent in situ hybridization (CPRINS-FISH) was developed to recognize individual genes in a single bacterial cell. In CPRINS, the amplicon was long single-stranded DNA and thus retained within the permeabilized microbial cells. FISH with a multiply labeled fluorescent probe set enabled significant reduction in nonspecific background while maintaining high fluorescence signals of target bacteria. The ampicillin resistance gene in Escherichia coli, chloramphenicol acetyltransferase gene in different gram-negative strains, and RNA polymerase sigma factor (rpoD) gene in Aeromonas spp. could be detected under identical permeabilization conditions. After concentration of environmental freshwater samples onto polycarbonate filters and subsequent coating of filters in gelatin, no decrease in bacterial cell numbers was observed with extensive permeabilization. The detection rates of bacterioplankton in river and pond water samples by CPRINS-FISH with a universal 16S rRNA gene primer and probe set ranged from 65 to 76% of total cell counts (mean, 71%). The concentrations of cells detected by CPRINS-FISH targeting of the rpoD genes of Aeromonas sobria and A. hydrophila in the water samples varied between 2.1 × 103 and 9.0 × 103 cells ml−1 and between undetectable and 5.1 × 102 cells ml−1, respectively. These results demonstrate that CPRINS-FISH provides a high sensitivity for microscopic detection of bacteria carrying a specific gene in natural aquatic samples.


Applied and Environmental Microbiology | 2007

High-Frequency Phage-Mediated Gene Transfer among Escherichia coli Cells, Determined at the Single-Cell Level

Takehiko Kenzaka; Katsuji Tani; Akiko Sakotani; Nobuyasu Yamaguchi; Masao Nasu

ABSTRACT Recent whole-genome analysis suggests that lateral gene transfer by bacteriophages has contributed significantly to the genetic diversity of bacteria. To accurately determine the frequency of phage-mediated gene transfer, we employed cycling primed in situ amplification-fluorescent in situ hybridization (CPRINS-FISH) and investigated the movement of the ampicillin resistance gene among Escherichia coli cells mediated by phage at the single-cell level. Phages P1 and T4 and the newly isolated E. coli phage EC10 were used as vectors. The transduction frequencies determined by conventional plating were 3 × 10−8 to 2 × 10−6, 1 × 10−8 to 4 × 10−8, and <4 × 10−9 to 4 × 10−8 per PFU for phages P1, T4, and EC10, respectively. The frequencies of DNA transfer determined by CPRINS-FISH were 7 × 10−4 to 1 × 10−3, 9 × 10−4 to 3 × 10−3, and 5 × 10−4 to 4 × 10−3 for phages P1, T4, and EC10, respectively. Direct viable counting combined with CPRINS-FISH revealed that more than 20% of the cells carrying the transferred gene retained their viabilities. These results revealed that the difference in the number of viable cells carrying the transferred gene and the number of cells capable of growth on the selective medium was 3 to 4 orders of magnitude, indicating that phage-mediated exchange of DNA sequences among bacteria occurs with unexpectedly high frequency.


Applied and Environmental Microbiology | 2006

Quantitative Determination of Free-DNA Uptake in River Bacteria at the Single-Cell Level by In Situ Rolling-Circle Amplification

Fumito Maruyama; Katsuji Tani; Takehiko Kenzaka; Nobuyasu Yamaguchi; Masao Nasu

ABSTRACT Detection of plasmid DNA uptake in river bacteria at the single-cell level was carried out by rolling-circle amplification (RCA). Uptake of a plasmid containing the green fluorescent protein gene (gfp) by indigenous bacteria from two rivers in Osaka, Japan, was monitored for 506 h using this in situ gene amplification technique with optimized cell permeabilization conditions. Plasmid uptake determined by in situ RCA was compared to direct counts of cells expressing gfp under fluorescence microscopy to examine differences in detection sensitivities between the two methods. Detection of DNA uptake as monitored by in situ RCA was 20 times higher at maximum than that by direct counting of gfp-expressing cells. In situ RCA could detect bacteria taking up the plasmid in several samples in which no gfp-expressing cells were apparent, indicating that in situ gene amplification techniques can be used to determine accurate rates of extracellular DNA uptake by indigenous bacteria in aquatic environments.


Archive | 2012

Scanning Electron Microscopy Imaging of Bacteria Based on Nucleic Acid Sequences

Takehiko Kenzaka; Katsuji Tani

Scanning electron microscopy (SEM) has been widely used in environmental microbiology to characterize the surface structure of biomaterials and to measure cell attachment and changes in morphology of bacteria. Moreover, SEM is useful for defining the number and distribution of microorganisms that adhere to surfaces. Traditionally, inability to provide phylogenetic or genetic information about microorganisms has been one limitation of SEM in environmental microbiology.


Letters in Applied Microbiology | 2009

Scanning electron microscope imaging of bacteria based on DNA sequence.

Takehiko Kenzaka; Ai Ishidoshiro; Katsuji Tani; Masao Nasu

Aims:  To develop a scanning electron microscopic approach using in situ hybridization (SEM–ISH) for gaining both genetic and morphological information about target bacteria.

Collaboration


Dive into the Takehiko Kenzaka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katsuji Tani

Osaka Ohtani University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge