Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takeshi Shiraya is active.

Publication


Featured researches published by Takeshi Shiraya.


Journal of Plant Physiology | 2010

Salicylic acid and the flowering gene FLOWERING LOCUS T homolog are involved in poor-nutrition stress-induced flowering of Pharbitis nil.

Kaede C. Wada; Mizuki Yamada; Takeshi Shiraya; Kiyotoshi Takeno

The short-day plants Pharbitis nil (synonym Ipomoea nil), var. Violet and Tendan were grown in a diluted nutrient solution or tap water for 20 days under long-day conditions. Violet plants were induced to flower and vegetative growth was inhibited, whereas Tendan plants were not induced to flower, although vegetative growth was inhibited under these conditions. The Violet plants induced to flower by poor-nutrition stress produced fertile seeds and their progeny developed normally. Defoliated Violet scions grafted onto the rootstocks of Violet or Tendan were induced to flower under poor-nutrition stress conditions, but Tendan scions grafted onto the Violet rootstocks were not induced to flower. These results indicate that a transmissible flowering stimulus is involved in the induction of flowering by poor-nutrition stress. The poor-nutrition stress-induced flowering was inhibited by aminooxyacetic acid, a phenylalanine ammonia-lyase inhibitor, and this inhibition was almost completely reversed by salicylic acid (SA). However, exogenously applied SA did not induce flowering under non-stress conditions, suggesting that SA may be necessary but not sufficient to induce flowering. PnFT2, a P. nil ortholog of the flowering gene FLOWERING LOCUS T (FT) of Arabidopsis thaliana, was expressed when the Violet plants were induced to flower by growing in tap water, but expression of PnFT1, another ortholog of FT, was not induced, suggesting the specific involvement of PnFT2 in stress-induced flowering.


Plant and Cell Physiology | 2014

Identification of oxidatively modified proteins in salt-stressed Arabidopsis: a carbonyl-targeted proteomics approach.

Junichi Mano; Mitsuaki Nagata; Shoutarou Okamura; Takeshi Shiraya; Toshiaki Mitsui

In plants, environmental stresses cause an increase in the intracellular level of reactive oxygen species (ROS), leading to tissue injury. To obtain biochemical insights into this damage process, we investigated the protein carbonyls formed by ROS or by the lipid peroxide-derived α,β-unsaturated aldehydes and ketones (i.e. reactive carbonyl species, or RCS) in the leaves of Arabidopsis thaliana under salt stress. A. thaliana Col-0 plants that we treated with 300 mM NaCl for 72 h under continuous illumination suffered irreversible leaf damage. Several RCS such as 4-hydroxy-(E)-2-nonenal (HNE) were increased within 12 h of this salt treatment. Immunoblotting using distinct antibodies against five different RCS, i.e. HNE, 4-hydroxy-(E)-2-hexenal, acrolein, crotonaldehyde and malondialdehyde, revealed that RCS-modified proteins accumulated in leaves with the progress of the salt stress treatment. The band pattern of Western blotting suggested that these different RCS targeted a common set of proteins. To identify the RCS targets, we collected HNE-modified proteins via an anti-HNE antiserum affinity trap and performed an isobaric tag for relative and absolute quantitation, as a quantitative proteomics approach. Seventeen types of protein, modified by 2-fold more in the stressed plants than in the non-stressed plants, were identified as sensitive RCS targets. With aldehyde-reactive probe-based affinity trapping, we collected the oxidized proteins and identified 22 additional types of protein as sensitive ROS targets. These RCS and ROS target proteins were distributed in the cytosol and apoplast, as well as in the ROS-generating organelles the peroxisome, chloroplast and mitochondrion, suggesting the participation of plasma membrane oxidation in the cellular injury. Possible mechanisms by which these modified targets cause cell death are discussed.


Journal of Plant Physiology | 2012

Salicylic acid is involved in the regulation of starvation stress-induced flowering in Lemna paucicostata.

Aya Shimakawa; Takeshi Shiraya; Yuta Ishizuka; Kaede C. Wada; Toshiaki Mitsui; Kiyotoshi Takeno

The short-day plant, Lemna paucicostata (synonym Lemna aequinoctialis), was induced to flower when cultured in tap water without any additional nutrition under non-inductive long-day conditions. Flowering occurred in all three of the tested strains, and strain 6746 was the most sensitive to the starvation stress conditions. For each strain, the stress-induced flowering response was weaker than that induced by short-day treatment, and the stress-induced flowering of strain 6746 was completely inhibited by aminooxyacetic acid and l-2-aminooxy-3-phenylpropionic acid, which are inhibitors of phenylalanine ammonia-lyase. Significantly higher amounts of endogenous salicylic acid (SA) were detected in the fronds that flowered under the poor-nutrition conditions than in the vegetative fronds cultured under nutrition conditions, and exogenously applied SA promoted the flowering response. The results indicate that endogenous SA plays a role in the regulation of stress-induced flowering.


Frontiers in Plant Science | 2013

Proteomics of rice grain under high temperature stress

Toshiaki Mitsui; Takeshi Shiraya; Kentaro Kaneko; Kaede C. Wada

Recent proteomic analyses revealed dynamic changes of metabolisms during rice grain development. Interestingly, proteins involved in glycolysis, citric acid cycle, lipid metabolism, and proteolysis were accumulated at higher levels in mature grain than those of developing stages. High temperature (HT) stress in rice ripening period causes damaged (chalky) grains which have loosely packed round shape starch granules. The HT stress response on protein expression is complicated, and the molecular mechanism of the chalking of grain is obscure yet. Here, the current state on the proteomics research of rice grain grown under HT stress is briefly overviewed.


Plant Biotechnology Journal | 2015

Golgi/plastid-type manganese superoxide dismutase involved in heat-stress tolerance during grain filling of rice

Takeshi Shiraya; Taiki Mori; Tatsuya Maruyama; Maiko Sasaki; Takeshi Takamatsu; Kazusato Oikawa; Kimiko Itoh; Kentaro Kaneko; Hiroaki Ichikawa; Toshiaki Mitsui

Summary Superoxide dismutase (SOD) is widely assumed to play a role in the detoxification of reactive oxygen species caused by environmental stresses. We found a characteristic expression of manganese SOD 1 (MSD1) in a heat‐stress‐tolerant cultivar of rice (Oryza sativa). The deduced amino acid sequence contains a signal sequence and an N‐glycosylation site. Confocal imaging analysis of rice and onion cells transiently expressing MSD1‐YFP showed MSD1‐YFP in the Golgi apparatus and plastids, indicating that MSD1 is a unique Golgi/plastid‐type SOD. To evaluate the involvement of MSD1 in heat‐stress tolerance, we generated transgenic rice plants with either constitutive high expression or suppression of MSD1. The grain quality of rice with constitutive high expression of MSD1 grown at 33/28 °C, 12/12 h, was significantly better than that of the wild type. In contrast, MSD1‐knock‐down rice was markedly susceptible to heat stress. Quantitative shotgun proteomic analysis indicated that the overexpression of MSD1 up‐regulated reactive oxygen scavenging, chaperone and quality control systems in rice grains under heat stress. We propose that the Golgi/plastid MSD1 plays an important role in adaptation to heat stress.


Methods of Molecular Biology | 2014

Quantitative proteomic analysis of intact plastids.

Takeshi Shiraya; Kentaro Kaneko; Toshiaki Mitsui

Plastids are specialized cell organelles in plant cells that are differentiated into various forms including chloroplasts, chromoplasts, and amyloplasts, and fulfill important functions in maintaining the overall cell metabolism and sensing environmental factors such as sunlight. It is therefore important to grasp the mechanisms of differentiation and functional changes of plastids in order to enhance the understanding of vegetality. In this chapter, details of a method for the extraction of intact plastids that makes analysis possible while maintaining the plastid functions are provided; in addition, a quantitative shotgun method for analyzing the composition and changes in the content of proteins in plastids as a result of environmental impacts is described.


Methods of Molecular Biology | 2014

Rapid and high-throughput N-glycomic analysis of plant glycoproteins.

Kentaro Kaneko; Takeshi Shiraya; Toshiaki Mitsui; Shin-Ichiro Nishimura

Glycoprotein is a major element in higher organisms including mammalians and plants. It is widely accepted that variation in cellular N-glycome is related to modulation in dynamic cellular mechanisms such as cell-cell adhesion, cell activation, and malignant alterations in mammalian cells. However, the physiological importance of glycan modification of glycoproteins in plant cells is still a matter of dispute. Therefore, a comprehensive and high-throughput analysis of N-glycome in plant glycoproteins is needed. Here, an application of the glycoblotting-mass spectrometry technique to plant glycoprotein research is described.


Plant Science | 2010

Induction of flowering by DNA demethylation in Perilla frutescens and Silene armeria: Heritability of 5-azacytidine-induced effects and alteration of the DNA methylation state by photoperiodic conditions

Hiroshi Kondo; Takeshi Shiraya; Kaede C. Wada; Kiyotoshi Takeno


Physiologia Plantarum | 2010

Flowering and dwarfism induced by DNA demethylation in Pharbitis nil

Yuiko Iwase; Takeshi Shiraya; Kiyotoshi Takeno


Rice | 2016

Proteomic and Glycomic Characterization of Rice Chalky Grains Produced Under Moderate and High-temperature Conditions in Field System

Kentaro Kaneko; Maiko Sasaki; Nanako Kuribayashi; Hiromu Suzuki; Yukiko Sasuga; Takeshi Shiraya; Takuya Inomata; Kimiko Itoh; Marouane Baslam; Toshiaki Mitsui

Collaboration


Dive into the Takeshi Shiraya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge