Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Taku Ito is active.

Publication


Featured researches published by Taku Ito.


Journal of Clinical Investigation | 2011

Mouse model of enlarged vestibular aqueducts defines temporal requirement of Slc26a4 expression for hearing acquisition

Byung Yoon Choi; Hyoung Mi Kim; Taku Ito; Kyu Yup Lee; Xiangming Li; Kelly Monahan; Yaqing Wen; Elizabeth Wilson; Kiyoto Kurima; Thomas L. Saunders; Ronald S. Petralia; Philine Wangemann; Thomas B. Friedman; Andrew J. Griffith

Mutations in human SLC26A4 are a common cause of hearing loss associated with enlarged vestibular aqueducts (EVA). SLC26A4 encodes pendrin, an anion-base exchanger expressed in inner ear epithelial cells that secretes HCO3- into endolymph. Studies of Slc26a4-null mice indicate that pendrin is essential for inner ear development, but have not revealed whether pendrin is specifically necessary for homeostasis. Slc26a4-null mice are profoundly deaf, with severe inner ear malformations and degenerative changes that do not model the less severe human phenotype. Here, we describe studies in which we generated a binary transgenic mouse line in which Slc26a4 expression could be induced with doxycycline. The transgenes were crossed onto the Slc26a4-null background so that all functional pendrin was derived from the transgenes. Varying the temporal expression of Slc26a4 revealed that E16.5 to P2 was the critical interval in which pendrin was required for acquisition of normal hearing. Lack of pendrin during this period led to endolymphatic acidification, loss of the endocochlear potential, and failure to acquire normal hearing. Doxycycline initiation at E18.5 or discontinuation at E17.5 resulted in partial hearing loss approximating the human EVA auditory phenotype. These data collectively provide mechanistic insight into hearing loss caused by SLC26A4 mutations and establish a model for further studies of EVA-associated hearing loss.


Cellular Physiology and Biochemistry | 2011

SLC26A4 Genotypes and Phenotypes Associated with Enlargement of the Vestibular Aqueduct

Taku Ito; Byung Yoon Choi; Kelly A. King; Christopher Zalewski; Julie A. Muskett; Parna Chattaraj; Thomas H. Shawker; James C. Reynolds; Carmen C. Brewer; Philine Wangemann; Seth L. Alper; Andrew J. Griffith

Enlargement of the vestibular aqueduct (EVA) is the most common inner ear anomaly detected in ears of children with sensorineural hearing loss. Pendred syndrome (PS) is an autosomal recessive disorder characterized by bilateral sensorineural hearing loss with EVA and an iodine organification defect that can lead to thyroid goiter. Pendred syndrome is caused by mutations of the SLC26A4 gene. SLC26A4 mutations may also be identified in some patients with nonsyndromic EVA (NSEVA). The presence of two mutant alleles of SLC26A4 is correlated with bilateral EVA and Pendred syndrome, whereas unilateral EVA and NSEVA are correlated with one (M1) or zero (M0) mutant alleles of SLC26A4. Thyroid gland enlargement (goiter) appears to be primarily dependent on the presence of two mutant alleles of SLC26A4 in pediatric patients, but not in older patients. In M1 families, EVA may be associated with a second, undetected SLC26A4 mutation or epigenetic modifications. In M0 families, there is probably etiologic heterogeneity that includes causes other than, or in addition to, monogenic inheritance.


American Journal of Human Genetics | 2014

Mutations in TBC1D24, a gene associated with epilepsy, also cause nonsyndromic deafness DFNB86.

Atteeq U. Rehman; Regie Lyn P. Santos-Cortez; Robert J. Morell; Meghan C. Drummond; Taku Ito; Kwanghyuk Lee; Asma A. Khan; Muhammad Asim R. Basra; Naveed Wasif; Muhammad Ayub; Syed Irfan Raza; Deborah A. Nickerson; Jay Shendure; Michael J. Bamshad; Saima Riazuddin; Neil Billington; Shaheen N. Khan; Penelope L. Friedman; Andrew J. Griffith; Wasim Ahmad; Sheikh Riazuddin; Suzanne M. Leal; Thomas B. Friedman

Inherited deafness is clinically and genetically heterogeneous. We recently mapped DFNB86, a locus associated with nonsyndromic deafness, to chromosome 16p. In this study, whole-exome sequencing was performed with genomic DNA from affected individuals from three large consanguineous families in which markers linked to DFNB86 segregate with profound deafness. Analyses of these data revealed homozygous mutation c.208G>T (p.Asp70Tyr) or c.878G>C (p.Arg293Pro) in TBC1D24 as the underlying cause of deafness in the three families. Sanger sequence analysis of TBC1D24 in an additional large family in which deafness segregates with DFNB86 identified the c.208G>T (p.Asp70Tyr) substitution. These mutations affect TBC1D24 amino acid residues that are conserved in orthologs ranging from fruit fly to human. Neither variant was observed in databases of single-nucleotide variants or in 634 chromosomes from ethnically matched control subjects. TBC1D24 in the mouse inner ear was immunolocalized predominantly to spiral ganglion neurons, indicating that DFNB86 deafness might be an auditory neuropathy spectrum disorder. Previously, six recessive mutations in TBC1D24 were reported to cause seizures (hearing loss was not reported) ranging in severity from epilepsy with otherwise normal development to epileptic encephalopathy resulting in childhood death. Two of our four families in which deafness segregates with mutant alleles of TBC1D24 were available for neurological examination. Cosegregation of epilepsy and deafness was not observed in these two families. Although the causal relationship between genotype and phenotype is not presently understood, our findings, combined with published data, indicate that recessive alleles of TBC1D24 can cause either epilepsy or nonsyndromic deafness.


PLOS Genetics | 2013

SLC26A4 targeted to the endolymphatic sac rescues hearing and balance in Slc26a4 mutant mice.

Xiangming Li; Joel D. Sanneman; Donald G. Harbidge; Fei Zhou; Taku Ito; Raoul D. Nelson; Nicolas Picard; Régine Chambrey; Dominique Eladari; Tracy Miesner; Andrew J. Griffith; Daniel C. Marcus; Philine Wangemann

Mutations of SLC26A4 are a common cause of human hearing loss associated with enlargement of the vestibular aqueduct. SLC26A4 encodes pendrin, an anion exchanger expressed in a variety of epithelial cells in the cochlea, the vestibular labyrinth and the endolymphatic sac. Slc26a4 Δ/Δ mice are devoid of pendrin and develop a severe enlargement of the membranous labyrinth, fail to acquire hearing and balance, and thereby provide a model for the human phenotype. Here, we generated a transgenic mouse line that expresses human SLC26A4 controlled by the promoter of ATP6V1B1. Crossing this transgene into the Slc26a4 Δ/Δ line restored protein expression of pendrin in the endolymphatic sac without inducing detectable expression in the cochlea or the vestibular sensory organs. The transgene prevented abnormal enlargement of the membranous labyrinth, restored a normal endocochlear potential, normal pH gradients between endolymph and perilymph in the cochlea, normal otoconia formation in the vestibular labyrinth and normal sensory functions of hearing and balance. Our study demonstrates that restoration of pendrin to the endolymphatic sac is sufficient to restore normal inner ear function. This finding in conjunction with our previous report that pendrin expression is required for embryonic development but not for the maintenance of hearing opens the prospect that a spatially and temporally limited therapy will restore normal hearing in human patients carrying a variety of mutations of SLC26A4.


PLOS Genetics | 2011

A noncoding point mutation of Zeb1 causes multiple developmental malformations and obesity in Twirler mice

Kiyoto Kurima; Ronna Hertzano; Oksana Gavrilova; Kelly Monahan; Karl B. Shpargel; Garani Nadaraja; Yoshiyuki Kawashima; Kyu Yup Lee; Taku Ito; Yujiro Higashi; David J. Eisenman; Scott E. Strome; Andrew J. Griffith

Heterozygous Twirler (Tw) mice develop obesity and circling behavior associated with malformations of the inner ear, whereas homozygous Tw mice have cleft palate and die shortly after birth. Zeb1 is a zinc finger protein that contributes to mesenchymal cell fate by repression of genes whose expression defines epithelial cell identity. This developmental pathway is disrupted in inner ears of Tw/Tw mice. The purpose of our study was to comprehensively characterize the Twirler phenotype and to identify the causative mutation. The Tw/+ inner ear phenotype includes irregularities of the semicircular canals, abnormal utricular otoconia, a shortened cochlear duct, and hearing loss, whereas Tw/Tw ears are severely malformed with barely recognizable anatomy. Tw/+ mice have obesity associated with insulin-resistance and have lymphoid organ hypoplasia. We identified a noncoding nucleotide substitution, c.58+181G>A, in the first intron of the Tw allele of Zeb1 (Zeb1Tw). A knockin mouse model of c.58+181G>A recapitulated the Tw phenotype, whereas a wild-type knockin control did not, confirming the mutation as pathogenic. c.58+181G>A does not affect splicing but disrupts a predicted site for Myb protein binding, which we confirmed in vitro. In comparison, homozygosity for a targeted deletion of exon 1 of mouse Zeb1, Zeb1ΔEx1, is associated with a subtle abnormality of the lateral semicircular canal that is different than those in Tw mice. Expression analyses of E13.5 Twirler and Zeb1ΔEx1 ears confirm that Zeb1ΔEx1 is a null allele, whereas Zeb1Tw RNA is expressed at increased levels in comparison to wild-type Zeb1. We conclude that a noncoding point mutation of Zeb1 acts via a gain-of-function to disrupt regulation of Zeb1Tw expression, epithelial-mesenchymal cell fate or interactions, and structural development of the inner ear in Twirler mice. This is a novel mechanism underlying disorders of hearing or balance.


Neurobiology of Disease | 2014

Slc26a4-insufficiency causes fluctuating hearing loss and stria vascularis dysfunction

Taku Ito; Xiangming Li; Kiyoto Kurima; Byung Yoon Choi; Philine Wangemann; Andrew J. Griffith

SLC26A4 mutations can cause a distinctive hearing loss phenotype with sudden drops and fluctuation in patients. Existing Slc26a4 mutant mouse lines have a profound loss of hearing and vestibular function, with severe inner ear malformations that do not model this human phenotype. In this study, we generated Slc26a4-insufficient mice by manipulation of doxycycline administration to a transgenic mouse line in which all Slc26a4 expression was under the control of doxycycline. Doxycycline was administered from conception to embryonic day 17.5, and then it was discontinued. Auditory brainstem response thresholds showed significant fluctuation of hearing loss from 1 through 3months of age. The endocochlear potential, which is required for inner ear sensory cell function, correlated with auditory brainstem response thresholds. We observed degeneration of stria vascularis intermediate cells, the cells that generate the endocochlear potential, but no other abnormalities within the cochlea. We conclude that fluctuations of hearing result from fluctuations of the endocochlear potential and stria vascularis dysfunction in Slc26a4-insufficient mouse ears. This model can now be used to test potential interventions to reduce or prevent sudden hearing loss or fluctuation in human patients. Our strategy to generate a hypomorphic mouse model utilizing the tet-on system will be applicable to other diseases in which a hypomorphic allele is needed to model the human phenotype.


Neuroscience | 2016

Slc26a4 expression prevents fluctuation of hearing in a mouse model of large vestibular aqueduct syndrome

Ayako Nishio; Taku Ito; Hui Cheng; Tracy S. Fitzgerald; Philine Wangemann; Andrew J. Griffith

SLC26A4 mutations cause fluctuating and progressive hearing loss associated with enlargement of the vestibular aqueduct (EVA). SLC26A4 encodes a transmembrane anion exchanger called pendrin expressed in nonsensory epithelial cells of the lateral wall of cochlea, vestibular organs and endolymphatic sac. We previously described a transgenic mouse model of EVA with doxycycline (dox)-inducible expression of Slc26a4 in which administration of dox from conception to embryonic day 17.5 (DE17.5) resulted in hearing fluctuation between 1 and 3months of age. In the present study, we hypothesized that Slc26a4 is required to stabilize hearing in DE17.5 ears between 1 and 3months of age. We tested our hypothesis by evaluating the effect of postnatal re-induction of Slc26a4 expression on hearing. Readministration of dox to DE17.5 mice at postnatal day 6 (P6), but not at 1month of age, resulted in reduced click-evoked auditory brainstem response (ABR) thresholds, less fluctuation of hearing and a higher surface density of pendrin expression in spindle-shaped cells of the stria vascularis. Pendrin expression in spindle-shaped cells was inversely correlated with ABR thresholds. These findings suggest that stabilization of hearing by readministration of dox at P6 is mediated by pendrin expression in spindle-shaped cells. We conclude that early re-induction of Slc26a4 expression can prevent fluctuation of hearing in our Slc26a4-insufficient mouse model. Restoration of SLC26A4 expression and function could reduce or prevent fluctuation of hearing in EVA patients.


Neuroscience | 2015

Progressive irreversible hearing loss is caused by stria vascularis degeneration in an Slc26a4-insufficient mouse model of large vestibular aqueduct syndrome

Taku Ito; Ayako Nishio; Philine Wangemann; Andrew J. Griffith

Hearing loss of patients with enlargement of the vestibular aqueduct (EVA) can fluctuate or progress, with overall downward progression. The most common detectable cause of EVA is mutations of SLC26A4. We previously described a transgenic Slc26a4-insufficient mouse model of EVA in which Slc26a4 expression is controlled by doxycycline administration. Mice that received doxycycline from conception until embryonic day 17.5 (DE17.5; doxycycline discontinued at embryonic day 17.5) had fluctuating hearing loss between 1 and 6 months of age with an overall downward progression after 6 months of age. In this study, we characterized the cochlear functional and structural changes underlying irreversible hearing loss in DE17.5 mice at 12 months of age. The endocochlear potential was decreased and inversely correlated with auditory brainstem response thresholds. The stria vascularis was thickened and edematous in ears with less severe hearing loss, and thinned and atrophic in ears with more severe hearing loss. There were pathologic changes in marginal cell morphology and gene expression that were not observed at 3 months. We conclude that strial dysfunction and degeneration are the primary causes of irreversible progressive hearing loss in our Slc26a4-insufficient mouse model of EVA. This model of primary strial atrophy may be used to explore the mechanisms of progressive hearing loss due to strial dysfunction.


Nature Biotechnology | 2012

Extracting energy from the inner ear

Kenneth Shepard; Taku Ito; Andrew J. Griffith

The endocochlear potential in a guinea pigs ear is captured and used to run a low-power radio.


World Journal of Otorhinolaryngology | 2013

SLC26A4 mutation testing for hearing loss associated with enlargement of the vestibular aqueduct

Taku Ito; Julie A. Muskett; Parna Chattaraj; Byung Yoon Choi; Kyu Yup Lee; Christopher Zalewski; Kelly A. King; Xiangming Li; Philine Wangemann; Thomas H. Shawker; Carmen C. Brewer; Seth L. Alper; Andrew J. Griffith

Collaboration


Dive into the Taku Ito's collaboration.

Top Co-Authors

Avatar

Andrew J. Griffith

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiangming Li

Kansas State University

View shared research outputs
Top Co-Authors

Avatar

Byung Yoon Choi

Seoul National University Bundang Hospital

View shared research outputs
Top Co-Authors

Avatar

Kiyoto Kurima

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kyu Yup Lee

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ayako Nishio

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Carmen C. Brewer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Christopher Zalewski

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Julie A. Muskett

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge