Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takumi Ishida is active.

Publication


Featured researches published by Takumi Ishida.


Journal of Pharmacology and Experimental Therapeutics | 2009

Maternal Exposure to Dioxin Disrupts Gonadotropin Production in Fetal Rats and Imprints Defects in Sexual Behavior

Tomoki Takeda; Yuki Matsumoto; Takayuki Koga; Junpei Mutoh; Yoshio Nishimura; Takao Shimazoe; Yuji Ishii; Takumi Ishida; Hideyuki Yamada

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related substances are a class of environmental pollutants with suspected toxic effects on reproductive and developmental processes. This study investigated a hypothesis that maternal exposure to TCDD damages gonadotropin-regulated steroidogenesis in fetal gonads to imprint defects in sexual behavior as well as the maturation of gonadal tissues. Oral administration of 1 μg/kg TCDD to pregnant Wistar rats at gestational day (GD) 15 attenuated the expression of luteinizing hormone (LH), a regulator of gonadal steroidogenesis, in the pituitaries of male and female fetuses at GD20. TCDD treatment also reduced the fetal expression of testicular and ovarian steroidogenic proteins, including steroidogenic acute-regulatory protein. These changes in pituitary and gonadal proteins were fetus-specific, and this seems not to be because of the greater delivery of TCDD to the brain of fetuses than adults. This is because a reduction in LH production was not reproduced even although TCDD was administered intraventricularly to adult rats. Direct supplementation of equine chorionic gonadotropin (eCG), an LH-mimicking hormone, to TCDD-exposed fetuses at GD17 restored the reduced expression of gonadal steroidogenic proteins. Maternal exposure to TCDD delayed the development of gonadal tissues in male and female pups and impaired their sexual behavior. However, eCG treatment at the fetal stage again restored not only tissue maturation but also many of the behavioral defects that occurred at adulthood. These results demonstrate that TCDD disrupts steroidogenesis in fetuses by targeting pituitary gonadotropin production and imprints demasculinization in males and defeminization in females in terms of their copulatory behavior.


PLOS ONE | 2012

Restoration of Dioxin-Induced Damage to Fetal Steroidogenesis and Gonadotropin Formation by Maternal Co-Treatment with α-Lipoic Acid

Takayuki Koga; Takumi Ishida; Tomoki Takeda; Yuji Ishii; Hiroshi Uchi; Kiyomi Tsukimori; Midori Yamamoto; Masaru Himeno; Masutaka Furue; Hideyuki Yamada

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), an endocrine disruptor, causes reproductive and developmental toxic effects in pups following maternal exposure in a number of animal models. Our previous studies have demonstrated that TCDD imprints sexual immaturity by suppressing the expression of fetal pituitary gonadotropins, the regulators of gonadal steroidogenesis. In the present study, we discovered that all TCDD-produced damage to fetal production of pituitary gonadotropins as well as testicular steroidogenesis can be repaired by co-treating pregnant rats with α-lipoic acid (LA), an obligate co-factor for intermediary metabolism including energy production. While LA also acts as an anti-oxidant, other anti-oxidants; i.e., ascorbic acid, butylated hydroxyanisole and edaravone, failed to exhibit any beneficial effects. Neither wasting syndrome nor CYP1A1 induction in the fetal brain caused through the activation of aryl hydrocarbon receptor (AhR) could be attenuated by LA. These lines of evidence suggest that oxidative stress makes only a minor contribution to the TCDD-induced disorder of fetal steroidogenesis, and LA has a restorative effect by targeting on mechanism(s) other than AhR activation. Following a metabolomic analysis, it was found that TCDD caused a more marked change in the hypothalamus, a pituitary regulator, than in the pituitary itself. Although the components of the tricarboxylic acid cycle and the ATP content of the fetal hypothalamus were significantly changed by TCDD, all these changes were again rectified by exogenous LA. We also provided evidence that the fetal hypothalamic content of endogenous LA is significantly reduced following maternal exposure to TCDD. Thus, the data obtained strongly suggest that TCDD reduces the expression of fetal pituitary gonadotropins to imprint sexual immaturity or disturb development by suppressing the level of LA, one of the key players serving energy production.


Biochimica et Biophysica Acta | 2013

Selenium-binding protein 1: Its physiological function, dependence on aryl hydrocarbon receptors, and role in wasting syndrome by 2,3,7,8-tetrachlorodibenzo-p-dioxin

Sayuri Tsujimoto; Takumi Ishida; Tomoki Takeda; Yuji Ishii; Yuko Onomura; Kiyomi Tsukimori; Shinji Takechi; Tadatoshi Yamaguchi; Hiroshi Uchi; Satoshi Suzuki; Midori Yamamoto; Masaru Himeno; Masutaka Furue; Hideyuki Yamada

BACKGROUND Selenium-binding protein 1 (Selenbp1) is suggested to play a role in tumor suppression, and may be involved in the toxicity produced by dioxin, an activator of aryl hydrocarbon receptors (AhR). However, the mechanism or likelihood is largely unknown because of the limited information available about the physiological role of Selenbp1. METHODS To address this issue, we generated Selenbp1-null [Selenbp1 (-/-)] mice, and examined the toxic effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in this mouse model. RESULTS Selenbp1 (-/-) mice exhibited only a few differences from wild-type mice in their apparent phenotypes. However, a DNA microarray experiment showed that many genes including Notch1 and Cdk1, which are known to be enhanced in ovarian carcinoma, are also increased in the ovaries of Selenbp1 (-/-) mice. Based on the different responses to TCDD between C57BL/6J and DBA/2J strains of mice, the expression of Selenbp1 is suggested to be under the control of AhR. However, wasting syndrome by TCDD occurred equally in Selenbp1 (-/-) and (+/+) mice. CONCLUSIONS The above pieces of evidence suggest that 1) Selenbp1 suppresses the expression of tumor-promoting genes although a reduction in Selenbp1 alone is not very serious as far as the animals are concerned; and 2) Selenbp1 induction by TCDD is neither a pre-requisite for toxicity nor a protective response for combating TCDD toxicity. GENERAL SIGNIFICANCE Selenbp1 (-/-) mice exhibit little difference in their apparent phenotype and responsiveness to dioxin compared with the wild-type. This may be due to the compensation of Selenbp1 function by a closely-related protein, Selenbp2.


Journal of Biological Chemistry | 2017

Dioxin-induced increase in leukotriene B4 biosynthesis through the aryl hydrocarbon receptor and its relevance to hepatotoxicity owing to neutrophil infiltration

Tomoki Takeda; Yukiko Komiya; Takayuki Koga; Takumi Ishida; Yuji Ishii; Yasushi Kikuta; Michio Nakaya; Hitoshi Kurose; Takehiko Yokomizo; Takao Shimizu; Hiroshi Uchi; Masutaka Furue; Hideyuki Yamada

Dioxin and related chemicals alter the expression of a number of genes by activating the aryl hydrocarbon receptors (AHR) to produce a variety of disorders including hepatotoxicity. However, it remains largely unknown how these changes in gene expression are linked to toxicity. To address this issue, we initially examined the effect of 2,3,7,8-tetrachrolodibenzo-p-dioxin (TCDD), a most toxic dioxin, on the hepatic and serum metabolome in male pubertal rats and found that TCDD causes many changes in the level of fatty acids, bile acids, amino acids, and their metabolites. Among these findings was the discovery that TCDD increases the content of leukotriene B4 (LTB4), an inducer of inflammation due to the activation of leukocytes, in the liver of rats and mice. Further analyses suggested that an increase in LTB4 comes from a dual mechanism consisting of an induction of arachidonate lipoxygenase-5, a rate-limiting enzyme in LTB4 synthesis, and the down-regulation of LTC4 synthase, an enzyme that converts LTA4 to LTC4. The above changes required AHR activation, because the same was not observed in AHR knock-out rats. In agreement with LTB4 accumulation, TCDD caused the marked infiltration of neutrophils into the liver. However, deleting LTB4 receptors (BLT1) blocked this effect. A TCDD-produced increase in the mRNA expression of inflammatory markers, including tumor-necrosis factor and hepatic damage, was also suppressed in BLT1-null mice. The above observations focusing on metabolomic changes provide novel evidence that TCDD accumulates LTB4 in the liver by an AHR-dependent induction of LTB4 biosynthesis to cause hepatotoxicity through neutrophil activation.


PLOS ONE | 2016

Nrf2-ARE-Dependent Alterations in Zinc Transporter mRNA Expression in HepG2 Cells

Takumi Ishida; Shinji Takechi

Zinc transporters are solute carrier family members. To date, 10 zinc transporters (ZnTs) and 14 Zrt-, Irt-like proteins (ZIPs) have been identified. ZnTs control intracellular zinc levels by effluxing zinc from the cytoplasm into the extracellular fluid, intracellular vesicles, and organelles; ZIPs also contribute to control intracellular zinc levels with influxing zinc into the cytoplasm. Recently, changes in zinc transporter expression have been observed in some stress-induced diseases, such as Alzheimer’s disease and diabetes mellitus. However, little is known regarding the mechanisms that regulate zinc transporter expression. To address this, we have investigated the effect of a well-established stress response pathway, the nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant responsive element (ARE) pathway, on zinc transporter mRNA levels. Exposure to 10−4 M tert-butylhydroquinone (t-BHQ), which activates Nrf2-ARE signaling, for 6 h significantly increases ZnT-1, ZnT-3, and ZnT-6 mRNAs levels, and significantly decreases ZnT-10 and ZIP-3 mRNA levels. These changes are not observed with 10−6 M t-BHQ, which does not activate Nrf2-ARE signaling. Furthermore, t-BHQ exposure does not affect metal responsive element transcription, a cis element that is activated in response to intracellular free zinc accumulation. From these results, we believe that the transcription of ZnT-1, ZnT-3, ZnT-6, ZnT-10, and ZIP-3 is influenced by the Nrf2-ARE signal transduction pathway.


Journal of Toxicological Sciences | 2015

Identification of dihydropyrazine-glutathione adducts

Shinji Takechi; Shigeru Ito; Nobuhiro Kashige; Takumi Ishida; Tadatoshi Yamaguchi

Dihydropyrazines (DHPs) are glycation intermediates generated both in vivo and in food. DHPs can lead to the formation of a variety of different radical species, which can lead to DNA damage and enzyme inhibition. In addition, the presence of DHPs can lead to a decrease in cellular glutathione (GSH) levels, and induce the expression of antioxidant genes. In this study, the products resulting from the reaction of DHP with GSH have been analyzed in detail, with some of the products being separated by reversed-phase HPLC. The structures of the isolated DHP-GSH adducts were determined by FAB-MS and NMR analyses. These data suggested that the reaction of DHP with a thiol moiety could be involved in oxidative stress, because an increase in the amount of DHP-GSH adducts would result in a decrease in the cellular GSH levels.


Archives of Biochemistry and Biophysics | 2015

3-Hydro-2,2,5,6-tetramethylpyrazine: A novel inducer of zinc transporter-1 in HepG2 human hepatocellular carcinoma cells.

Takumi Ishida; Tadatoshi Yamaguchi; Shinji Takechi

Dihydropyrazine compounds, including 3-hydro-2,2,5,6-tetramethylpyrazine (DHP-3), are low-molecular-weight glycation products spontaneously generated in vivo and also ingested via food. Our preliminary study using microarray analysis demonstrated that DHP-3 induced zinc transporter-1 (ZnT-1) in HepG2 cells. It is well known that the increase of intracellular zinc is a sensitive stimulating factor for ZnT-1 protein induction; however, there is little information about the induction of ZnT-1 by low-molecular-weight chemical compounds. Here, we attempted to clarify the mechanism of ZnT-1 induction by DHP-3. A significant increase of ZnT-1 mRNA was observed 6h after DHP-3 treatment at concentrations over 0.5mM, and disappeared 24h after exposure. This induction pattern followed that of metal-responsive transcription factor 1 (MTF-1) mRNA, a metalloregulatory protein that serves as a major transcription factor of ZnT-1. Moreover, DHP-3 yielded transcriptional activation of MTF-1 in a luciferase reporter assay. The intracellular zinc content was unaffected by the compound; however, oxidative stress was observed in cells under the same conditions that activated the MTF-1 signaling pathway. These results suggest that DHP-3 is a novel ZnT-1 inducer and acts via activation of the MTF-1 signaling pathway. Additionally, the activation of MTF-1 by this compound likely occurs through oxidative stress.


Environmental Toxicology and Pharmacology | 2008

Proteasome affects the expression of aryl hydrocarbon receptor-regulated proteins

Takumi Ishida; Masayo Kawakami; Hiroko Baba; Masahiro Yahata; Junpei Mutoh; Shuso Takeda; Hideaki Fujita; Yoshitaka Tanaka; Yuji Ishii; Hideyuki Yamada

The effect of proteasome inhibition with N-acetyl-leucyl-leucyl-norleucinal (ALLN) on the protein expression regulated by aryl hydrocarbon receptor (AhR) was studied in T47D breast tumor cells. The luciferase reporter gene assay using a construct which has the xenobiotic responsive element showed that the inducible expression of the reporter with AhR ligands was significantly reduced by co-treatment with ALLN. The same suppressive effect by ALLN was observed for ethoxyresorufin O-deethylase (EROD) activity induced by an AhR ligand, 3-methylcholanthrene (3MC). Despite the above effects, the induced expression of CYP1A1 and CYP1B1 mRNAs was unaffected by ALLN. While lactacystin, another proteasome inhibitor, exhibited the same effect as ALLN on EROD activity induced by 3MC, leupeptin, which is one of the cysteine protease inhibitors, had no such effect. Based on the evidence obtained, it appears that proteasome inhibition results in a reduction in the expression of AhR-regulated proteins.


Endocrinology | 2006

Fetal Pituitary Gonadotropin as an Initial Target of Dioxin in Its Impairment of Cholesterol Transportation and Steroidogenesis in Rats

Junpei Mutoh; Junko Taketoh; Kazuharu Okamura; Tetsushi Kagawa; Takumi Ishida; Yuji Ishii; Hideyuki Yamada


Life Sciences | 2007

Suppression of fetal testicular cytochrome P450 17 by maternal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin: A mechanism involving an initial effect on gonadotropin synthesis in the pituitary

Junko Taketoh; Junpei Mutoh; Tomoki Takeda; Tadashi Ogishima; Shuso Takeda; Yuji Ishii; Takumi Ishida; Hideyuki Yamada

Collaboration


Dive into the Takumi Ishida's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuta Oguri

Kyushu University of Health and Welfare

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge