Takuo Yuki
Kao Corporation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Takuo Yuki.
Journal of Immunology | 2011
Takuo Yuki; Hiroyuki Yoshida; Yumiko Akazawa; Aya Komiya; Yoshinori Sugiyama; Shintaro Inoue
The epidermis has developed physical and immunological barriers that prevent infiltration of deleterious chemicals and pathogens. As a first step to understanding the relationship between these barriers, we investigated whether TLR2 activation functionally alters tight junctions (TJs) in cultured human keratinocytes. Stimulation with peptidoglycan, a ligand for TLR2, elevated the TJ-associated barrier in the space of 3 h. The increase in TJ-associated barrier function due to peptidoglycan stimulation was suppressed by the knockdown of TLR adaptor MyD88 or the pretreatment with TLR2-neutralizing Ab, indicating that TLR2 activation enhanced TJ-associated barrier. One and 3 h after peptidoglycan stimulation, expression levels of the TJ proteins occludin, claudin-1, claudin-4, and ZO-1 were unchanged. However, immunoprecipitation studies demonstrated that the association of phospho-atypical protein kinase Cζ/ι, crucial for TJ biogenesis, with occludin was increased. Significantly, inhibition of atypical protein kinase Cζ/ι activity completely blocked the immediate elevation of the TJ-associated barrier. Finally, peptidoglycan was applied to the stratum corneum surface of a human skin equivalent, and the TJ barrier was evaluated. In the space of 3 h after the stimulation, the amount of intercellular tracer in the stratum corneum incubated from the dermal side was reduced, indicating that the TJ barrier is strengthened via TLR2 activation. Taken together, our findings indicated that infiltration of pathogens into the epidermis immediately enhanced TJ function via TLR2 signaling. Furthermore, the dynamically controlled TJs in skin are considered fundamental in preventing further invasion of pathogens and maintaining cutaneous barrier homeostasis.
Journal of Investigative Dermatology | 2011
Takuo Yuki; Akira Hachiya; Ayumi Kusaka; Penkanok Sriwiriyanont; Marty O. Visscher; Kazumasa Morita; Masahiko Muto; Yoshiki Miyachi; Yoshinori Sugiyama; Shintaro Inoue
It has not been confirmed whether tight junctions (TJs) function as a paracellular permeability barrier in adult human skin. To clarify this issue, we performed a TJ permeability assay using human skin obtained from abdominal plastic surgery. Occludin, a marker protein of TJs, was expressed in the granular layer, in which a subcutaneously injected paracellular tracer, Sulfo-NHS-LC-Biotin (556.59 Da), was halted. Incubation with ochratoxin A decreased the expression of claudin-4, an integral membrane protein of TJs, and the diffusion of paracellular tracer was no longer prevented at the TJs. These results demonstrate that human epidermis possesses TJs that function as an intercellular permeability barrier at least against small molecules (∼550 Da). UVB irradiation of human skin xenografts and human skin equivalents (HSEs) resulted in functional deterioration of TJs. Immunocytochemical staining of cultured keratinocytes showed that occludin was localized into dot-like shapes and formed a discontinuous network when exposed to UVB irradiation. Furthermore, UVB irradiation downregulated the active forms of Rac1 and atypical protein kinase C, suggesting that their inactivation caused functional deterioration of TJs. In conclusion, TJs function as a paracellular barrier against small molecules (∼550 Da) in human epidermis and are functionally deteriorated by UVB irradiation.
Journal of Dermatological Science | 2013
Takuo Yuki; Aya Komiya; Ayumi Kusaka; Tetsuya Kuze; Yoshinori Sugiyama; Shintaro Inoue
BACKGROUND The stratum corneum (SC) is a well-known structure responsible for the cutaneous barrier. Tight junctions (TJs) function as a paracellular barrier beneath the SC and are involved in the cutaneous barrier. It remains unclear how TJs are involved in the cutaneous barrier. OBJECTIVE In order to clarify the role of TJs in the cutaneous barrier, we investigated skin equivalent models with disrupted TJ barriers focusing on the SC. METHODS Skin equivalents with disrupted TJ barriers were established using GST-C-CPE, a peptide with specific inhibitory action against specific claudins. The changes of the SC barrier in the skin equivalents with disrupted TJ barriers were investigated and compared with control skin equivalents. RESULTS An outside-to-inside skin barrier assay revealed a defective SC barrier in skin equivalents with disrupted TJ barriers. A detailed examination of the SC revealed an increase in the pH of the SC in the skin equivalent with disrupted TJ barriers. An electron microscopy showed the failure of lamellar structures to mature and the failure of keratohyalin granules to degrade in the skin equivalents with disrupted TJ barriers. A thin layer chromatography analysis showed an increase in polar lipids and a decrease in non-polar lipids. A western blot analysis showed an increase in filaggrin dimer and trimer and a decrease in filaggrin monomer. CONCLUSION We found that disrupted TJs obstructed the SC formation responsible for the cutaneous barrier. Our study indicates the possibility that impaired TJ barriers affect polar lipids and profilaggrin processing by disturbing the pH condition of the SC.
PLOS ONE | 2016
Takuo Yuki; Megumi Tobiishi; Ayumi Kusaka-Kikushima; Yukiko Ota; Yoshiki Tokura
Tight junction (TJ) dysfunction in the stratum granulosum leads to aberrant barrier function of the stratum corneum (SC) in the epidermis. However, it is unclear whether TJs are perturbed in atopic dermatitis (AD), a representative aberrant SC-related skin disease, and whether some factors related to AD pathogenesis induce TJ dysfunction. To address these issues, we investigated the alterations of TJs in AD skin and the effects of Th2 and Th17 cytokines on TJs in a skin-equivalent model. The levels of TJ proteins were determined in the epidermis of nonlesional and lesional skin sites of AD. Western blot and immunohistochemical analyses revealed that the levels of zonula occludens 1 were decreased in the nonlesional sites of AD, and the levels of zonula occludens 1 and claudin-1 were decreased in the lesional sites relative to the levels in skin from healthy subjects. Next, we examined the effects of interleukin (IL)-4, tumor necrosis factor-α, IL-17, and IL-22 on the TJ barrier in a skin-equivalent model. Only IL-17 impaired the TJ barrier. Furthermore, we observed a defect in filaggrin monomer degradation in the IL-17–treated skin model. Thus, TJs are dysfunctional in AD, at least partly, due to the effect of IL-17, which may result in an aberrant SC barrier.
Journal of Immunotoxicology | 2017
Yasutaka Kuroda; Takuo Yuki; Yutaka Takahashi; Hitoshi Sakaguchi; Kayoko Matsunaga; Hiroshi Itagaki
Abstract A growing body of evidence suggests that epicutaneous sensitization of protein allergens induces immediate-type hypersensitivity (IHS) following induction of Type 2 immune responses in animals and humans. Thymic stromal lymphopoietin (TSLP) derived from keratinocytes is a cytokine that can activate dendritic cells and has been implicated in development of inflammatory Type 2 helper T-cells. However, there is no direct evidence that allergens directly regulate TSLP expression in keratinocytes. This study aimed to evaluate the response of TSLP to protein allergens in cultured human keratinocytes and to identify appropriate endpoints for IHS. The transcription of long-form TSLP (loTSLP) was strongly induced by ovalbumin, wheat gluten (WG), acid-hydrolyzed WG (acid-HWG), and extracts from feces of Dermatophagoides pteronyssinus and D. farina, and trypsin, but not by rare allergens, human serum albumin (HSA), or extracts of mite bodies. In acid-HWG, loTSLP mRNA was significantly augmented by acid hydrolysis of WG for 0.5 h compared to WG. However, prolonged acid hydrolysis attenuated this induction similarly to that reported in previous animal studies. These results suggested that intense loTSLP transcriptional induction was a characteristic of a high-allergenic protein. Additionally, TSLP production was induced by exposure to ovalbumin, WG, and acid-HWG in combination with a trio of cytokines, i.e. interleukin (IL)-4, IL-13, and tumor necrosis factor (TNF)-α. However, no TSLP protein was detected following exposure to HSA, even in the presence of these cytokines. With acid-HWG, TSLP protein release was consistent with loTSLP transcription. Thus, intense loTSLP transcriptional induction and TSLP protein expression are each effective indicators that can be used for in vitro screening of IHS.
Toxicology in Vitro | 2018
Takayuki Abo; Allison Hilberer; Christine Behle-Wagner; Mika Watanabe; David Cameron; Annette Kirst; Yuko Nukada; Takuo Yuki; Daisuke Araki; Hitoshi Sakaguchi; Hiroshi Itagaki
The Short Time Exposure (STE) test method is an alternative method for assessing eye irritation potential using Statens Seruminstitut Rabbit Cornea cells and has been adopted as test guideline 491 by the Organisation for Economic Co-operation and Development. Its good predictive performance in identifying the Globally Harmonized System (GHS) No Category (NC) or Irritant Category has been demonstrated in evaluations of water-soluble substances, oil-soluble substances, and water-soluble mixtures. However, the predictive performance for oil-soluble mixtures was not evaluated. Twenty-four oil-soluble mixtures were evaluated using the STE test method. The GHS NC or Irritant Category of 22 oil-soluble mixtures were consistent with that of a Reconstructed human Cornea-like Epithelium (RhCE) test method. Inter-laboratory reproducibility was then confirmed using 20 water- and oil-soluble mixtures blind-coded. The concordance in GHS NC or Irritant Category among four laboratories was 90%-100%. In conclusion, the concordance in comparison with the results of RhCE test method using 24 oil-soluble mixtures and inter-laboratory reproducibility using 20 water- and oil-soluble mixtures blind-coded were good, indicating that the STE test method is a suitable alternative for predicting the eye irritation potential of both substances and mixtures.
Journal of Toxicological Sciences | 2018
Takayuki Abo; Takuo Yuki; Rui Xu; Daisuke Araki; Yutaka Takahashi; Hitoshi Sakaguchi; Hiroshi Itagaki
The Short Time Exposure (STE) test method is an in vitro method for assessing the eye irritation potential of chemicals and is used to classify the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) Category 1 and No Category (NC). The method has been adopted by the Organisation for Economic Co-operation and Development (OECD) as test guideline (TG) 491 since 2015. While this method can be used to classify GHS NC, it is not suitable for testing highly volatile substances and solids other than surfactants. Here we evaluated highly volatile substances to expand the applicability domain. According to TG 491, acetone, ethanol, iso-propanol, and methyl acetate as highly volatile substances resulted in false negatives. Saline was selected as a solvent of these false negatives. In this study, mineral oil was used as the solvent, because these false negatives were amphiphilic. Based on this change, four highly volatile substances were correctly evaluated. The predictive performance for classifying GHS NC was then verified using a substance dataset constructed in reference to the Draize eye test Reference Database and STE Summary Review Document. The accuracy and false-negative rate were 86.6% (194/224) and 3.8% (3/80), respectively. Collectively, the applicability domain was expanded by changing the solvent to mineral oil for highly volatile substances, and the predictive performance for the new applicability domain including highly volatile substances was excellent. The STE test method is suitable to classify GHS NC, indicating its applicability as a test method in a bottom-up approach.
Toxicology Letters | 2018
Takayuki Abo; Takuo Yuki; R. Xu; D. Araki; Yutaka Takahashi; Hitoshi Sakaguchi; Hiroshi Itagaki
Toxicology Letters | 2017
Yasutaka Kuroda; Takuo Yuki; Yutaka Takahashi; Hitoshi Sakaguchi; Kayoko Matsunaga; Hiroshi Itagaki
Journal of Dermatological Science | 2016
Takuo Yuki; Ayumi Kusaka; Aya Komiya; Megumi Tobiishi; Tukiko Ota; Yoshiki Tokura