Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takuro Horii is active.

Publication


Featured researches published by Takuro Horii.


Human Molecular Genetics | 2008

MeCP2-dependent repression of an imprinted miR-184 released by depolarization

Tasuku Nomura; Mika Kimura; Takuro Horii; Sumiyo Morita; Hidenobu Soejima; Shinichi Kudo; Izuho Hatada

Both fragile X syndrome and Rett syndrome are commonly associated with autism spectrum disorders and involve defects in synaptic plasticity. MicroRNA is implicated in synaptic plasticity because fragile X mental retardation protein was recently linked to the microRNA pathway. DNA methylation is also involved in synaptic plasticity since methyl CpG-binding protein 2 (MeCP2) is mutated in patients with Rett syndrome. Here we report that expression of miR-184, a brain-specific microRNA repressed by the binding of MeCP2 to its promoter, is upregulated by the release of MeCP2 after depolarization. The restricted release of MeCP2 from the paternal allele results in paternal allele-specific expression of miR-184. Our finding provides a clue to the link between the microRNA and DNA methylation pathways.


Nature Biotechnology | 2016

Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions

Sumiyo Morita; Hirofumi Noguchi; Takuro Horii; Kazuhiko Nakabayashi; Mika Kimura; Kohji Okamura; Atsuhiko Sakai; Hideyuki Nakashima; Kenichiro Hata; Kinichi Nakashima; Izuho Hatada

Despite the importance of DNA methylation in health and disease, technologies to readily manipulate methylation of specific sequences for functional analysis and therapeutic purposes are lacking. Here we adapt the previously described dCas9–SunTag for efficient, targeted demethylation of specific DNA loci. The original SunTag consists of ten copies of the GCN4 peptide separated by 5-amino-acid linkers. To achieve efficient recruitment of an anti-GCN4 scFv fused to the ten-eleven (TET) 1 hydroxylase, which induces demethylation, we changed the linker length to 22 amino acids. The system attains demethylation efficiencies >50% in seven out of nine loci tested. Four of these seven loci showed demethylation of >90%. We demonstrate targeted demethylation of CpGs in regulatory regions and demethylation-dependent 1.7- to 50-fold upregulation of associated genes both in cell culture (embryonic stem cells, cancer cell lines, primary neural precursor cells) and in vivo in mouse fetuses.


International Journal of Molecular Sciences | 2013

Generation of an ICF Syndrome Model by Efficient Genome Editing of Human Induced Pluripotent Stem Cells Using the CRISPR System

Takuro Horii; Daiki Tamura; Sumiyo Morita; Mika Kimura; Izuho Hatada

Genome manipulation of human induced pluripotent stem (iPS) cells is essential to achieve their full potential as tools for regenerative medicine. To date, however, gene targeting in human pluripotent stem cells (hPSCs) has proven to be extremely difficult. Recently, an efficient genome manipulation technology using the RNA-guided DNase Cas9, the clustered regularly interspaced short palindromic repeats (CRISPR) system, has been developed. Here we report the efficient generation of an iPS cell model for immunodeficiency, centromeric region instability, facial anomalies syndrome (ICF) syndrome using the CRISPR system. We obtained iPS cells with mutations in both alleles of DNA methyltransferase 3B (DNMT3B) in 63% of transfected clones. Our data suggest that the CRISPR system is highly efficient and useful for genome engineering of human iPS cells.


Scientific Reports | 2015

Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering

Takuro Horii; Yuji Arai; Miho Yamazaki; Sumiyo Morita; Mika Kimura; Masahiro Itoh; Yumiko Abe; Izuho Hatada

The CRISPR/Cas system, in which the Cas9 endonuclease and a guide RNA complementary to the target are sufficient for RNA-guided cleavage of the target DNA, is a powerful new approach recently developed for targeted gene disruption in various animal models. However, there is little verification of microinjection methods for generating knockout mice using this approach. Here, we report the verification of microinjection methods of the CRISPR/Cas system. We compared three methods for injection: (1) injection of DNA into the pronucleus, (2) injection of RNA into the pronucleus, and (3) injection of RNA into the cytoplasm. We found that injection of RNA into the cytoplasm was the most efficient method in terms of the numbers of viable blastocyst stage embryos and full-term pups generated. This method also showed the best overall knockout efficiency.


International Journal of Molecular Sciences | 2013

miR-29 Represses the Activities of DNA Methyltransferases and DNA Demethylases

Sumiyo Morita; Takuro Horii; Mika Kimura; Takahiro Ochiya; Shoji Tajima; Izuho Hatada

Members of the microRNA-29 (miR-29) family directly target the DNA methyltransferases, DNMT3A and DNMT3B. Disturbances in the expression levels of miR-29 have been linked to tumorigenesis and tumor aggressiveness. Members of the miR-29 family are currently thought to repress DNA methylation and suppress tumorigenesis by protecting against de novo methylation. Here, we report that members of the miR-29 family repress the activities of DNA methyltransferases and DNA demethylases, which have opposing roles in control of DNA methylation status. Members of the miR-29 family directly inhibited DNA methyltransferases and two major factors involved in DNA demethylation, namely tet methylcytosine dioxygenase 1 (TET1) and thymine DNA glycosylase (TDG). Overexpression of miR-29 upregulated the global DNA methylation level in some cancer cells and downregulated DNA methylation in other cancer cells, suggesting that miR-29 suppresses tumorigenesis by protecting against changes in the existing DNA methylation status rather than by preventing de novo methylation of DNA.


PLOS ONE | 2008

Astrocyte-Specific Genes Are Generally Demethylated in Neural Precursor Cells Prior to Astrocytic Differentiation

Izuho Hatada; Masakazu Namihira; Sumiyo Morita; Mika Kimura; Takuro Horii; Kinichi Nakashima

Epigenetic changes are thought to lead to alterations in the property of cells, such as differentiation potential. Neural precursor cells (NPCs) differentiate only into neurons in the midgestational brain, yet they become able to generate astrocytes in the late stage of development. This differentiation-potential switch could be explained by epigenetic changes, since the promoters of astrocyte-specific marker genes, glial fibrillary acidic protein (Gfap) and S100β, have been shown to become demethylated in late-stage NPCs prior to the onset of astrocyte differentiation; however, whether demethylation occurs generally in other astrocyctic genes remains unknown. Here we analyzed DNA methylation changes in mouse NPCs between the mid-(E11.5) and late (E14.5) stage of development by a genome-wide DNA methylation profiling method using microarrays and found that many astrocytic genes are demethylated in late-stage NPCs, enabling the cell to become competent to express these genes. Although these genes are already demethylated in late-stage NPCs, they are not expressed until cells differentiate into astrocytes. Thus, late-stage NPCs have epigenetic potential which can be realized in their expression after astrocyte differentiation.


Cell Reports | 2016

5-Hydroxymethylcytosine Marks Sites of DNA Damage and Promotes Genome Stability.

Georgia R. Kafer; Xuan Li; Takuro Horii; Isao Suetake; Shoji Tajima; Izuho Hatada; Peter M. Carlton

5-hydroxymethylcytosine (5hmC) is a DNA base created during active DNA demethylation by the recently discovered TET enzymes. 5hmC has essential roles in gene expression and differentiation. Here, we demonstrate that 5hmC also localizes to sites of DNA damage and repair. 5hmC accumulates at damage foci induced by aphidicolin and microirradiation and colocalizes with major DNA damage response proteins 53BP1 and γH2AX, revealing 5hmC as an epigenetic marker of DNA damage. Deficiency for the TET enzymes eliminates damage-induced 5hmC accumulation and elicits chromosome segregation defects in response to replication stress. Our results indicate that the TET enzymes and 5hmC play essential roles in ensuring genome integrity.


PLOS ONE | 2009

Dicer Is Required for Maintaining Adult Pancreas

Sumiyo Morita; Akemi Hara; Itaru Kojima; Takuro Horii; Mika Kimura; Tadahiro Kitamura; Takahiro Ochiya; Katsumi Nakanishi; Ryo Matoba; Kenichi Matsubara; Izuho Hatada

Dicer1, an essential component of RNA interference and the microRNA pathway, has many important roles in the morphogenesis of developing tissues. Dicer1 null mice have been reported to die at E7.5; therefore it is impossible to study its function in adult tissues. We previously reported that Dicer1-hypomorphic mice, whose Dicer1 expression was reduced to 20% in all tissues, were unexpectedly viable. Here we analyzed these mice to ascertain whether the down-regulation of Dicer1 expression has any influence on adult tissues. Interestingly, all tissues of adult (8–10 week old) Dicer1-hypomorphic mice were histologically normal except for the pancreas, whose development was normal at the fetal and neonatal stages; however, morphologic abnormalities in Dicer1-hypomorphic mice were detected after 4 weeks of age. This suggested that Dicer1 is important for maintaining the adult pancreas.


PeerJ | 2013

Genome engineering of mammalian haploid embryonic stem cells using the Cas9/RNA system

Takuro Horii; Sumiyo Morita; Mika Kimura; Ryouhei Kobayashi; Daiki Tamura; Ryou U. Takahashi; Hironobu Kimura; Isao Suetake; Hirokazu Ohata; Koji Okamoto; Shoji Tajima; Takahiro Ochiya; Yumiko Abe; Izuho Hatada

Haploid embryonic stem cells (ESCs) are useful for studying mammalian genes because disruption of only one allele can cause loss-of-function phenotypes. Here, we report the use of haploid ESCs and the CRISPR RNA-guided Cas9 nuclease gene-targeting system to manipulate mammalian genes. Co-transfection of haploid ESCs with vectors expressing Cas9 nuclease and single-guide RNAs (sgRNAs) targeting Tet1, Tet2, and Tet3 resulted in the complete disruption of all three genes and caused a loss-of-function phenotype with high efficiency (50%). Co-transfection of cells with vectors expressing Cas9 and sgRNAs targeting two loci on the same chromosome resulted in the creation of a large chromosomal deletion and a large inversion. Thus, the use of the CRISPR system in combination with haploid ESCs provides a powerful platform to manipulate the mammalian genome.


Stem Cells | 2008

Loss of Genomic Imprinting in Mouse Parthenogenetic Embryonic Stem Cells

Takuro Horii; Mika Kimura; Sumiyo Morita; Yasumitsu Nagao; Izuho Hatada

In mammals, complementary contributions of both the maternal and the paternal genomes are required for normal development because of the parental‐allele‐specific modification of the genome, called genomic imprinting. Therefore, parthenogenetic embryos (PG) with two maternal genomes cannot develop to term, and PG chimeras show a restricted cell contribution of donor cells and reduced weight, although they can develop to term. On the other hand, parthenogenetic embryonic stem cells (PGES) chimeras are more normal in their tissue contribution of donor cells and body weight compared with PG chimeras. To elucidate the epigenetic mechanisms underlying this, we analyzed the imprint status in donor cells of PGES and PG chimeras. In somatic lineages, genomic imprinting was lost in some PGES chimeras, whereas those in PG chimeras were almost totally maintained. Moreover, loss of imprints correlated to the gene expression pattern of imprinted genes. Therefore, this loss of imprinting in PGES chimeras could improve the tissue contribution and body weight to a normal level. On the other hand, in germ lineages, both PGES and PG in chimeras showed normal erasure of imprints, indicating that the reprogramming in germ lineages is an inevitable event, regardless of the imprint status of primordial germ cells.

Collaboration


Dive into the Takuro Horii's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuhiko Nakabayashi

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Kenichiro Hata

National Institute of Genetics

View shared research outputs
Researchain Logo
Decentralizing Knowledge