Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takuto Hideyama is active.

Publication


Featured researches published by Takuto Hideyama.


The Journal of Neuroscience | 2010

Induced Loss of ADAR2 Engenders Slow Death of Motor Neurons from Q/R Site-Unedited GluR2

Takuto Hideyama; Takenari Yamashita; Takeshi Suzuki; Shoji Tsuji; Miyoko Higuchi; Peter H. Seeburg; Ryosuke Takahashi; Hidemi Misawa; Shin Kwak

GluR2 is a subunit of the AMPA receptor, and the adenosine for the Q/R site of its pre-mRNA is converted to inosine (A-to-I conversion) by the enzyme called adenosine deaminase acting on RNA 2 (ADAR2). Failure of A-to-I conversion at this site affects multiple AMPA receptor properties, including the Ca2+ permeability of the receptor-coupled ion channel, thereby inducing fatal epilepsy in mice (Brusa et al., 1995; Feldmeyer et al., 1999). In addition, inefficient GluR2 Q/R site editing is a disease-specific molecular dysfunction found in the motor neurons of sporadic amyotrophic lateral sclerosis (ALS) patients (Kawahara et al., 2004). Here, we generated genetically modified mice (designated as AR2) in which the ADAR2 gene was conditionally targeted in motor neurons using the Cre/loxP system. These AR2 mice showed a decline in motor function commensurate with the slow death of ADAR2-deficient motor neurons in the spinal cord and cranial motor nerve nuclei. Notably, neurons in nuclei of oculomotor nerves, which often escape degeneration in ALS, were not decreased in number despite a significant decrease in GluR2 Q/R site editing. All cellular and phenotypic changes in AR2 mice were prevented when the mice carried endogenous GluR2 alleles engineered to express edited GluR2 without ADAR2 activity (Higuchi et al., 2000). Thus, loss of ADAR2 activity causes AMPA receptor-mediated death of motor neurons.


Neurobiology of Disease | 2012

Profound downregulation of the RNA editing enzyme ADAR2 in ALS spinal motor neurons.

Takuto Hideyama; Takenari Yamashita; Hitoshi Aizawa; Shoji Tsuji; Akiyoshi Kakita; Hitoshi Takahashi; Shin Kwak

Amyotrophic lateral sclerosis (ALS) is the most common adult-onset fatal motor neuron disease. In spinal motor neurons of patients with sporadic ALS, normal RNA editing of GluA2, a subunit of the L-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, is inefficient. Adenosine deaminase acting on RNA 2 (ADAR2) specifically mediates RNA editing at the glutamine/arginine (Q/R) site of GluA2 and motor neurons expressing Q/R site-unedited GluA2 undergo slow death in conditional ADAR2 knockout mice. Therefore, investigation into whether inefficient ADAR2-mediated GluA2 Q/R site-editing occurs universally in motor neurons of patients with ALS would provide insight into the pathogenesis of ALS. We analyzed the extents of GluA2 Q/R site-editing in an individual laser-captured motor neuron of 29 ALS patients compared with those of normal and disease control subjects. In addition, we analyzed the enzymatic activity of three members of the ADAR family (ADAR1, ADAR2 and ADAR3) in ALS motor neurons expressing unedited GluA2 mRNA and those expressing only edited GluA2 mRNA. Q/R site-unedited GluA2 mRNA was expressed in a significant proportion of motor neurons from all of the ALS cases examined. Conversely, motor neurons of the normal and disease control subjects expressed only edited GluA2 mRNA. ADAR2, but not ADAR1 or ADAR3, was significantly downregulated in all the motor neurons of ALS patients, more extensively in those expressing Q/R site-unedited GluA2 mRNA than those expressing only Q/R site-edited GluA2 mRNA. These results indicate that ADAR2 downregulation is a profound pathological change relevant to death of motor neurons in ALS.


Nature Communications | 2012

A role for calpain-dependent cleavage of TDP-43 in amyotrophic lateral sclerosis pathology

Takenari Yamashita; Takuto Hideyama; Kosuke Hachiga; Sayaka Teramoto; Jiro Takano; Nobuhisa Iwata; Takaomi C. Saido; Shin Kwak

Both mislocalization of TDP-43 and downregulation of RNA-editing enzyme ADAR2 co-localize in the motor neurons of amyotrophic lateral sclerosis patients, but how they are linked is not clear. Here we demonstrate that activation of calpain, a Ca2+-dependent cysteine protease, by upregulation of Ca2+-permeable AMPA receptors generates carboxy-terminal-cleaved TDP-43 fragments and causes mislocalization of TDP-43 in the motor neurons expressing glutamine/arginine site-unedited GluA2 of conditional ADAR2 knockout (AR2) mice that mimic the amyotrophic lateral sclerosis pathology. These abnormalities are inhibited in the AR2res mice that express Ca2+-impermeable AMPA receptors in the absence of ADAR2 and in the calpastatin transgenic mice, but are exaggerated in the calpastatin knockout mice. Additional demonstration of calpain-dependent TDP43 fragments in the spinal cord and brain of amyotrophic lateral sclerosis patients, and high vulnerability of amyotrophic lateral sclerosis-linked mutant TDP43 to cleavage by calpain support the crucial role of the calpain-dependent cleavage of TDP43 in the amyotrophic lateral sclerosis pathology.


Neuroscience Research | 2006

Underediting of GluR2 mRNA, a neuronal death inducing molecular change in sporadic ALS, does not occur in motor neurons in ALS1 or SBMA.

Yukio Kawahara; Hui Sun; Kyoko Ito; Takuto Hideyama; Masashi Aoki; Gen Sobue; Shoji Tsuji; Shin Kwak

Deficient RNA editing of the AMPA receptor subunit GluR2 at the Q/R site is a primary cause of neuronal death and recently has been reported to be a tightly linked etiological cause of motor neuron death in sporadic amyotrophic lateral sclerosis (ALS). We quantified the RNA editing efficiency of the GluR2 Q/R site in single motor neurons of rats transgenic for mutant human Cu/Zn-superoxide dismutase (SOD1) as well as patients with spinal and bulbar muscular atrophy (SBMA), and found that GluR2 mRNA was completely edited in all the motor neurons examined. It seems likely that the death cascade is different among the dying motor neurons in sporadic ALS, familial ALS with mutant SOD1 and SBMA.


Frontiers in Molecular Neuroscience | 2011

When Does ALS Start? ADAR2–GluA2 Hypothesis for the Etiology of Sporadic ALS

Takuto Hideyama; Shin Kwak

Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease. More than 90% of ALS cases are sporadic, and the majority of sporadic ALS patients do not carry mutations in genes causative of familial ALS; therefore, investigation specifically targeting sporadic ALS is needed to discover the pathogenesis. The motor neurons of sporadic ALS patients express unedited GluA2 mRNA at the Q/R site in a disease-specific and motor neuron-selective manner. GluA2 is a subunit of the AMPA receptor, and it has a regulatory role in the Ca2+-permeability of the AMPA receptor after the genomic Q codon is replaced with the R codon in mRNA by adenosine–inosine conversion, which is mediated by adenosine deaminase acting on RNA 2 (ADAR2). Therefore, ADAR2 activity may not be sufficient to edit all GluA2 mRNA expressed in the motor neurons of ALS patients. To investigate whether deficient ADAR2 activity plays pathogenic roles in sporadic ALS, we generated genetically modified mice (AR2) in which the ADAR2 gene was conditionally knocked out in the motor neurons. AR2 mice showed an ALS-like phenotype with the death of ADAR2-lacking motor neurons. Notably, the motor neurons deficient in ADAR2 survived when they expressed only edited GluA2 in AR2/GluR-BR/R (AR2res) mice, in which the endogenous GluA2 alleles were replaced by the GluR-BR allele that encoded edited GluA2. In heterozygous AR2 mice with only one ADAR2 allele, approximately 20% of the spinal motor neurons expressed unedited GluA2 and underwent degeneration, indicating that half-normal ADAR2 activity is not sufficient to edit all GluA2 expressed in motor neurons. It is likely therefore that the expression of unedited GluA2 causes the death of motor neurons in sporadic ALS. We hypothesize that a progressive downregulation of ADAR2 activity plays a critical role in the pathogenesis of sporadic ALS and that the pathological process commences when motor neurons express unedited GluA2.


PLOS ONE | 2012

Co-Occurrence of TDP-43 Mislocalization with Reduced Activity of an RNA Editing Enzyme, ADAR2, in Aged Mouse Motor Neurons

Takuto Hideyama; Sayaka Teramoto; Kosuke Hachiga; Takenari Yamashita; Shin Kwak

TDP-43 pathology in spinal motor neurons is a neuropathological hallmark of sporadic amyotrophic lateral sclerosis (ALS) and has recently been shown to be closely associated with the downregulation of an RNA editing enzyme called adenosine deaminase acting on RNA 2 (ADAR2) in the motor neurons of sporadic ALS patients. Because TDP-43 pathology is found more frequently in the brains of elderly patients, we investigated the age-related changes in the TDP-43 localization and ADAR2 activity in mouse motor neurons. We found that ADAR2 was developmentally upregulated, and its mRNA expression level was progressively decreased in the spinal cords of aged mice. Motor neurons normally exhibit nuclear ADAR2 and TDP-43 immunoreactivity, whereas fast fatigable motor neurons in aged mice demonstrated a loss of ADAR2 and abnormal TDP-43 localization. Importantly, these motor neurons expressed significant amounts of the Q/R site-unedited AMPA receptor subunit 2 (GluA2) mRNA. Because expression of unedited GluA2 has been demonstrated as a lethality-causing molecular abnormality observed in the motor neurons, these results suggest that age-related decreases in ADAR2 activity play a mechanistic role in aging and serve as one of risk factors for ALS.


Neuroscience Research | 2012

The abnormal processing of TDP-43 is not an upstream event of reduced ADAR2 activity in ALS motor neurons

Takenari Yamashita; Takuto Hideyama; Sayaka Teramoto; Shin Kwak

TDP-43 pathology in motor neurons is a hallmark of ALS. In addition, the reduced expression of an RNA editing enzyme, adenosine deaminase acting on RNA 2 (ADAR2), increases the expression of GluA2 with an unedited Q/R site in the motor neurons of patients with sporadic ALS. As the occurrence of these two disease-specific abnormalities in the same motor neurons suggests a molecular link between them, we examined the effects of altered TDP-43 processing on ADAR2 activity in TetHeLaG2m and Neuro2a cells. We found that ADAR2 activity did not consistently change due to the overexpression or knockdown of TDP-43 or the expression of abnormal TDP-43, including caspase-3-cleaved fragments, truncated TDP-43 lacking either nuclear localization or export signals and ALS-linked TDP-43 mutants. These results suggest that the abnormal processing of TDP-43 is not an upstream event of inefficient GluA2 Q/R site editing in the motor neurons of sporadic ALS patients.


Journal of Clinical Neuroscience | 2016

Deficient RNA-editing enzyme ADAR2 in an amyotrophic lateral sclerosis patient with a FUSP525L mutation

Hitoshi Aizawa; Takuto Hideyama; Takenari Yamashita; Takashi Kimura; Naoki Suzuki; Masashi Aoki; Shin Kwak

Mutations in the fused in sarcoma (FUS) gene can cause amyotrophic lateral sclerosis (ALS), and FUS gene mutations have been reported in sporadic ALS patients with basophilic cytoplasmic inclusions. Deficiency of adenosine deaminase acting on RNA 2 (ADAR2), an enzyme that specifically catalyzes GluA2 Q/R site-editing, has been reported in considerable proportions of spinal motor neurons of the majority of sporadic ALS patients. We describe the relationship between GluA2 Q/R site-editing efficiency and FUS-positive inclusions in a patient with FUS(P525L). A 24-year-old woman with ALS presented with basophilic cytoplasmic inclusions, significantly reduced GluA2 Q/R site-editing efficiency in the spinal motor neurons, and markedly decreased ADAR2 mRNA levels. Neuropathologic examination showed that not all spinal motor neurons expressed ADAR2 and revealed FUS-positive cytoplasmic inclusions in motor neurons irrespective of ADAR2 immunoreactivity. There were no phosphorylated transactive response (TAR) DNA-binding protein 43 kDa (TDP-43)-positive inclusions, indicating that there was no tight correlation between ADAR2 deficiency and TDP-43 deposition. ADAR2 deficiency can occur in ALS patients with a FUS(P525L) mutation and is unrelated to the presence of FUS-positive inclusions. FUS-associated ALS may share neurodegenerative characteristics with classical sporadic ALS.


Neuroscience Research | 2012

RNA editing of the Q/R site of GluA2 in different cultured cell lines that constitutively express different levels of RNA editing enzyme ADAR2.

Takenari Yamashita; Chieko Tadami; Yoshinori Nishimoto; Takuto Hideyama; Daisuke Kimura; Takeshi Suzuki; Shin Kwak

Adenosine deaminase acting on RNA 2 (ADAR2) catalyzes RNA editing at the glutamine/arginine (Q/R) site of GluA2, and an ADAR2 deficiency may play a role in the death of motor neurons in ALS patients. The expression level of ADAR2 mRNA is a determinant of the editing activity at the GluA2 Q/R site in human brain but not in cultured cells. Therefore, we investigated the extent of Q/R site-editing in the GluA2 mRNA and pre-mRNA as well as the ADAR2 mRNA and GluA2 mRNA and pre-mRNA levels in various cultured cell lines. The extent of the GluA2 mRNA editing was 100% except in SH-SY5Y cells, which have a much lower level of ADAR2 than the other cell lines examined. The ADAR2 activity at the GluA2 pre-mRNA Q/R site correlated with the ADAR2 mRNA level relative to the GluA2 pre-mRNA. SH-SY5Y cells expressed higher level of the GluA2 mRNA in the cytoplasm compared with other cell lines. These results suggest that the ADAR2 expression level reflects editing activity at the GluA2 Q/R site and that although the edited GluA2 pre-mRNA is readily spliced, the unedited GluA2 pre-mRNA is also spliced and transported to the cytoplasm when ADAR2 expression is low.


Brain Research | 2014

Unique nuclear vacuoles in the motor neurons of conditional ADAR2-knockout mice.

Shoichi Sasaki; Takenari Yamashita; Takuto Hideyama; Shin Kwak

A reduction in adenosine deaminase acting on RNA 2 (ADAR2) activity causes the death of spinal motor neurons specifically via the GluA2 Q/R site-RNA editing failure in sporadic amyotrophic lateral sclerosis (ALS). We studied, over time, the spinal cords of ADAR2-knockout mice, which are the mechanistic model mice for sporadic ALS, using homozygous ADAR2(flox/flox)/VAChT-Cre.Fast (AR2), homozygous ADAR2(flox/flox)/VAChT-Cre.Slow (AR2Slow), and heterozygous ADAR2(flox/+)/VAChT-Cre.Fast (AR2H) mice. The conditional ADAR2-knockout mice were divided into 3 groups by stage: presymptomatic (AR2H mice), early symptomatic (AR2 mice, AR2H mice) and late symptomatic (AR2Slow mice). Light-microscopically, some motor neurons in AR2 and AR2H mice (presymptomatic) showed simple neuronal atrophy and astrogliosis, and AR2H (early symptomatic) and AR2Slow mice often showed vacuoles predominantly in motor neurons. The number of vacuole-bearing anterior horn neurons decreased with the loss of anterior horn neurons in AR2H mice after 40 weeks of age. Electron-microscopically, in AR2 mice, while the cytoplasm of normal-looking motor neurons was almost always normal-appearing, the interior of dendrites was frequently loose and disorganized. In AR2H and AR2Slow mice, large vacuoles without a limiting membrane were observed in the anterior horns, preferentially in the nuclei of motor neurons, astrocytes and oligodendrocytes. Nuclear vacuoles were not observed in AR2res (ADAR2(flox/flox)/VAChT-Cre.Fast/GluR-B(R/R)) mice, in which motor neurons express edited GluA2 in the absence of ADAR2. These findings suggest that ADAR2-reduction is associated with progressive deterioration of nuclear architecture, resulting in vacuolated nuclei due to a Ca(2+)-permeable AMPA receptor-mediated mechanism.

Collaboration


Dive into the Takuto Hideyama's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takeshi Suzuki

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge