Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasushi Shiio is active.

Publication


Featured researches published by Yasushi Shiio.


The Journal of Physiology | 2001

Interhemispheric facilitation of the hand motor area in humans

Ritsuko Hanajima; Yoshikazu Ugawa; Katsuyuki Machii; Hitoshi Mochizuki; Yasuo Terao; Hiroyuki Enomoto; Toshiaki Furubayashi; Yasushi Shiio; Haruo Uesugi; Ichiro Kanazawa

1 We investigated interhemispheric interactions between the human hand motor areas using transcranial cortical magnetic and electrical stimulation. 2 A magnetic test stimulus was applied over the motor cortex contralateral to the recorded muscle (test motor cortex), and an electrical or magnetic conditioning stimulus was applied over the ipsilateral hemisphere (conditioning motor cortex). We investigated the effects of the conditioning stimulus on responses to the test stimulus. 3 Two effects were elicited at different interstimulus intervals (ISIs): early facilitation (ISI = 4–5 ms) and late inhibition (ISI ≥ 11 ms). 4 The early facilitation was evoked by a magnetic or anodal electrical conditioning stimulus over the motor point in the conditioning hemisphere, which suggests that the conditioning stimulus for early facilitation directly activates corticospinal neurones. 5 The ISIs for early facilitation taken together with the time required for activation of corticospinal neurones by I3‐waves in the test hemisphere are compatible with the interhemispheric conduction time through the corpus callosum. Early facilitation was observed in responses to I3‐waves, but not in responses to D‐waves nor to I1‐waves. Based on these results, we conclude that early facilitation is mediated through the corpus callosum. 6 If the magnetic conditioning stimulus induced posteriorly directed currents, or if an anodal electrical conditioning stimulus was applied over a point 2 cm anterior to the motor point, then we observed late inhibition with no early facilitation. 7 Late inhibition was evoked in responses to both I1‐ and I3‐waves, but was not evoked in responses to D‐waves. The stronger the conditioning stimulus was, the greater was the amount of inhibition. These results are compatible with surround inhibition at the motor cortex.


The Journal of Physiology | 2002

Mechanisms of intracortical I-wave facilitation elicited with paired-pulse magnetic stimulation in humans

Ritsuko Hanajima; Yoshikazu Ugawa; Yasuo Terao; Hiroyuki Enomoto; Yasushi Shiio; Hitoshi Mochizuki; Toshiaki Furubayashi; Haruo Uesugi; Nobue K. Iwata; Ichiro Kanazawa

In order to elucidate the mechanisms underlying intracortical I‐wave facilitation elicited by paired‐pulse magnetic stimulation, we compared intracortical facilitation of I1‐waves with that of I3‐waves using single motor unit and surface electromyographic (EMG) recordings from the first dorsal interosseous muscle (FDI). We used a suprathreshold first stimulus (S1) and a subthreshold second stimulus (S2). In most experiments, both stimuli induced currents in the same direction. In others, S1 induced posteriorly directed currents and S2 induced anteriorly directed currents. When both stimuli induced anteriorly directed currents (I1‐wave effects), an interstimulus interval (ISI) of 1.5 ms resulted in extra facilitation of the responses to S1 alone. The latency of this effect was equivalent to that of the I2‐wave from S1. When S1 evoked posteriorly directed currents (I3‐wave recruitment), facilitation occurred at a latency corresponding to the I3‐wave from S1. This facilitation occurred at an ISI of 1.5 ms when both S1 and S2 flowed posteriorly, and at an ISI of approximately 3.5 ms when S1 was posteriorly and S2 was anteriorly directed. Based on these findings, we propose the following mechanisms for intracortical I‐wave facilitation. When S1 and S2 induce currents in the same direction, facilitation is produced by summation between excitatory postsynaptic potentials (EPSPs) elicited by S1 and subliminal depolarization of interneurones elicited by S2 directly. When S1 and S2 induce currents in the opposite direction, facilitation is produced by the same mechanism as above or by temporal and spatial summation of EPSPs elicited by two successive stimuli at interneurones or corticospinal neurones of the motor cortex.


Clinical Neurophysiology | 2001

Decreased sensory cortical excitability after 1 Hz rTMS over the ipsilateral primary motor cortex

Hiroyuki Enomoto; Yoshikazu Ugawa; R. Hanajima; Kaoru Yuasa; Hitoshi Mochizuki; Yasuo Terao; Yasushi Shiio; Toshiaki Furubayashi; Nobue K. Iwata; Ichiro Kanazawa

OBJECTIVES To study changes in the excitability of the sensory cortex by repetitive transcranial magnetic stimulation (rTMS) in humans. METHODS Somatosensory evoked potentials (SEPs) and antidromic sensory nerve action potentials (SNAPs) were elicited by right median nerve stimulation at the wrist before and after low frequency (1 Hz) rTMS over the left motor cortex, lateral premotor cortex, sensory cortex, and also after sham stimulation. The intensity of rTMS was fixed at 1.1 times the active motor threshold at the hand area of motor cortex. RESULTS N20 peak (N20p)-P25 and P25-N33 amplitudes were suppressed after rTMS over the motor cortex, whereas the N20 onset (N20o)-N20p and SNAP amplitudes were not affected. They recovered to the baseline about 100 min after the rTMS. rTMS over the premotor cortex or sensory cortex or sham stimulation had no suppressive effect on SEPs. CONCLUSIONS The reduction of N20p-P25 and P25-N33 components without any changes of N20o-N20p amplitude suggests that the suppression occurs in the sensory cortex. rTMS (1 Hz) of the motor cortex induces a long-lasting suppression of the ipsilateral sensory cortex even at an intensity as low as 1.1 times the active motor threshold, probably via cortico-cortical pathways between motor and sensory cortex.


Brain Research | 2000

Predominant activation of I1-waves from the leg motor area by transcranial magnetic stimulation.

Yasuo Terao; Yoshikazu Ugawa; Ritsuko Hanajima; Katsuyuki Machii; Toshiaki Furubayashi; Hitoshi Mochizuki; Hiroyuki Enomoto; Yasushi Shiio; Haruo Uesugi; Nobue K. Iwata; Ichiro Kanazawa

We performed transcranial magnetic stimulation (TMS) to elucidate the D- and I-wave components comprising the motor evoked potentials (MEPs) elicited from the leg motor area, especially at near-threshold intensity. Recordings were made from the tibialis anterior muscle using needle electrodes. A figure-of-eight coil was placed so as to induce current in the brain in eight different directions, starting from the posterior-to-anterior direction and rotating it in 45 degrees steps. The latencies were compared with those evoked by transcranial electrical stimulation (TES) and TMS using a double cone coil. Although the latencies of MEPs ranged from D to I3 waves, the most prominent component evoked by TMS at near-threshold intensity represented the I1 wave. With the double cone coil, the elicited peaks always represented I1 waves, and D waves were evoked only at very high stimulus intensities, suggesting a high effectiveness of this coil in inducing I1 waves. Using the figure-of-eight coil, current flowing anteriorly or toward the hemisphere contralateral to the recorded muscle was more effective in eliciting large responses than current flowing posteriorly or toward the ipsilateral hemisphere. The effective directions induced I1 waves with the lowest threshold, whereas the less effective directions elicited I1 and I2 waves with a similar frequency. Higher stimulus intensities resulted in concomitant activation of D through I3 waves with increasing amount of D waves, but still the predominance of I1 waves was apparent. The amount of I waves, especially of I1 waves, was greater than predicted by the hypothesis that TMS over the leg motor area activates the output cells directly, but rather suggests predominant transsynaptic activation. The results accord with those of recent human epidural recordings.


Clinical Neurophysiology | 2003

Functional connectivity revealed by single-photon emission computed tomography (SPECT) during repetitive transcranial magnetic stimulation (rTMS) of the motor cortex

Shingo Okabe; Ritsuko Hanajima; Takashi Ohnishi; Masami Nishikawa; Etsuko Imabayashi; Harumasa Takano; Takashi Kawachi; Hiroshi Matsuda; Yasushi Shiio; Nobue K. Iwata; Toshiaki Furubayashi; Yasuo Terao; Yoshikazu Ugawa

OBJECTIVE In the present study, we studied effects of 1 Hz repetitive transcranial magnetic stimulation (rTMS) over the left primary motor cortex (M1) on regional cerebral blood flow (rCBF) using single-photon emission computed tomography (SPECT). METHODS SPECT measurements were carried out under two experimental conditions: real and sham stimulation. In sham stimulation, to exclude other components besides currents in the brain in rTMS, we applied sound and electrical stimulation to the skin of the head. 99mTc-ethyl cysteinate dimer was injected during the real or sham stimulation. Images were analyzed with the statistical parametric mapping software (SPM99). Relative differences in adjusted rCBF between two conditions were determined by a voxel-by-voxel paired t test. RESULTS 1 Hz rTMS at an intensity of 1.1 x active motor threshold evoked increase of rCBF in the contralateral (right) cerebellar hemisphere. Reduction of rCBF was observed in the contralateral M1, superior parietal lobule (most probably corresponding to PE area in the monkey) (Rizzolatti G, Luppino G, Matelli M. Electroenceph clin Neurophysiol 1998;106:283-296), inferior parietal lobule (PF area in the monkey (Rizzolatti et al., 1998)), dorsal and ventral premotor areas (dPM, vPM) and supplementary motor area (SMA). CONCLUSIONS Increase of rCBF in the contralateral cerebellum must reflect facilitatory connection between the motor cortex and contralateral cerebellum. Reduced rCBF in the contralateral M1 may be produced by transcallosal inhibitory effect of the left motor cortical activation. CBF decrease in the right PM, SMA and parietal cortex may reflect some secondary effects. Low frequency rTMS at an intensity of around threshold for active muscles can evoke rCBF changes. SIGNIFICANCE We demonstrated that rCBF changes could be elicited even by low frequency rTMS at such a low intensity as the threshold for an active muscle. Combination of rTMS and SPECT is one of powerful tools to study interareal connection within the human brain.


Clinical Neurophysiology | 2000

The human hand motor area is transiently suppressed by an unexpected auditory stimulus

Toshiaki Furubayashi; Yoshikazu Ugawa; Yasuo Terao; Ritsuko Hanajima; Katsuyuki Sakai; Katsuyuki Machii; Hitoshi Mochizuki; Yasushi Shiio; Haruo Uesugi; Hiroyuki Enomoto; Ichiro Kanazawa

OBJECTIVE To study the effect of a loud auditory stimulus on the excitability of the human motor cortex. METHODS Ten normal volunteers participated in this study. The size of responses to transcranial magnetic or electrical cortical stimulation (TMS or TES) given at different times (ISIs) after a loud sound were compared with those to TMS or TES alone (control response). Different intensities and durations of sound were used at several intertrial intervals (ITIs). In addition, we examined how the presence of a preceding click modulated the effect of a loud sound (prepulse inhibition). The incidence of startle response evoked by various stimuli was also studied. RESULTS A loud auditory stimulus suppressed EMG responses to TMS when it preceded the magnetic stimulus by 30-60 ms, whereas it did not affect responses to TES. This suggests that the suppression occurred at a cortical level. Significant suppression was evoked only when the sound was louder than 80 dB and longer than 50 ms in duration. Such stimuli frequently elicited a startle response when given alone. The effect was not evoked if the ITI was 5 s, but was evoked when it was longer than 20 s. A preceding click reduced the suppression elicited by loud sounds. CONCLUSIONS Auditory stimuli that produced the greatest effect on responses to TMS had the same characteristics as those which yielded the most consistent auditory startle. We suggest that modulation of cortical excitability occurs in parallel with the auditory startle and both may arise from the same region of the brain-stem.


Journal of Neurology, Neurosurgery, and Psychiatry | 1999

Intracortical inhibition of the motor cortex is normal in chorea

Ritsuko Hanajima; Yoshikazu Ugawa; Yasuo Terao; Toshiaki Furubayashi; Katsuyuki Machii; Yasushi Shiio; Hiroyuki Enomoto; Haruo Uesugi; Hitoshi Mochizuki; Ichiro Kanazawa

Intracortical inhibition of the motor cortex was investigated using a paired pulse magnetic stimulation method in 14 patients with chorea caused by various aetiologies (six patients with Huntington’s disease, one with chorea acanthocytosis, a patient with systemic lupus erythematosus with a vascular lesion in the caudate, three with senile chorea and three with chorea of unknown aetiology). The time course and amount of inhibition was the same in the patients as in normal subjects, suggesting that the inhibitory mechanisms of the motor cortex studied with this method are intact in chorea. This is in striking contrast with the abnormal inhibition seen in patients with Parkinson’s disease or focal hand dystonia, or those with a lesion in the putamen or globus pallidus. It is concluded that the pathophysiological mechanisms responsible for chorea are different from those producing other involuntary movements.


Neuroscience Research | 2003

Recovery function of and effects of hyperventilation on somatosensory evoked high-frequency oscillation in Parkinson's disease and myoclonus epilepsy

Hitoshi Mochizuki; Katsuyuki Machii; Yasuo Terao; Toshiaki Furubayashi; Ritsuko Hanajima; Hiroyuki Enomoto; Haruo Uesugi; Yasushi Shiio; Keiko Kamakura; Ichiro Kanazawa; Yoshikazu Ugawa

To evaluate recovery function of and effects of hyperventilation (HV) on high-frequency oscillations (HFOs) of median nerve somatosensory evoked potential (SEP), we recorded SEPs in 8 Parkinsons disease (PD) patients with enlarged HFOs, 4 myoclonus epilepsy (ME) patients and 10 healthy volunteers (N). SEP was recorded from the hand sensory area contralateral to the median nerve stimulated at the wrist. Responses were amplified with filters set at 0.5 and 3000 Hz. HFOs were obtained by digitally filtering raw SEPs from 500 to 1000 Hz. We measured amplitudes of the N20 onset-peak (N20o-p), N20 peak-P25 peak (N20p-P25p), P25 peak-N33 peak (P25p-N33p), the early (1st-2nd) and late (3rd) HFOs. For the recovery function study, paired-pulse stimuli at various interstimulus intervals (20, 50, 100, 150, 200 and 300 ms) were given. To investigate effects of HV, amplitudes of several components of SEPs recorded after HV were compared with those before HV. In PD and ME, the N20o-p recovery curve showed significantly less suppression as compared with those of N. The P25p-N33p recovery curve of ME showed longer suppression than those of N and PD. There were no significant differences in the early or late HFOs recovery curves among three groups. At the dysinhibited state after HV, the late HFO was reduced in association with a significant enlargement of the N20p-P25p amplitude in normal subjects. This suggests that the late HFOs should reflect bursts of inhibitory interneurons. In the ME patients, the early HFOs significantly decreased by HV. The pattern in ME patients may be explained by a kind of compensation for already enhanced SEPs (giant SEP) in the dysinhibited situation. We conclude that (1) Giant HFOs are normally regulated by inhibitory neuronal systems involving in paired stimulation SEP. (2) The late HFOs must reflect bursts of GABAergic inhibitory interneurons.


Neurology | 2016

Anti-TIF1-γ antibody and cancer-associated myositis A clinicohistopathologic study

Ayumi Hida; Takenari Yamashita; Yuji Hosono; Manami Inoue; Kenichi Kaida; Masato Kadoya; Yusuke Miwa; Nobuyuki Yajima; Reika Maezawa; Satoko Arai; Kazuhiro Kurasawa; Kazuhiro Ito; Hiroyuki Shimada; Tomoko Iwanami; Masahiro Sonoo; Yuki Hatanaka; Shigeo Murayama; Ayumi Uchibori; Atsuro Chiba; Hitoshi Aizawa; Takayuki Momoo; Yoshiharu Nakae; Yasuhisa Sakurai; Yasushi Shiio; Hideji Hashida; Toshihiro Yoshizawa; Yoshio Sakiyama; Aya Oda; Kiyoharu Inoue; Sousuke Takeuchi

Objective:We aimed to analyze the clinical and histopathologic features of cancer-associated myositis (CAM) in relation to anti–transcriptional intermediary factor 1 &ggr; antibody (anti-TIF1-&ggr;-Ab), a marker of cancer association. Methods:We retrospectively studied 349 patients with idiopathic inflammatory myopathies (IIMs), including 284 patients with pretreatment biopsy samples available. For the classification of IIMs, the European Neuromuscular Center criteria were applied. Patients with CAM with (anti-TIF1-&ggr;-Ab[+] CAM) and without anti-TIF1-&ggr;-Ab (anti-TIF1-&ggr;-Ab[−] CAM) were compared with patients with IIM without cancers within and beyond 3 years of myositis diagnosis. Results:Cancer was detected in 75 patients, of whom 36 (48%) were positive for anti-TIF1-&ggr;-Ab. In anti-TIF1-&ggr;-Ab(+) patients with CAM, cancers were detected within 1 year of myositis diagnosis in 35 (97%) and before 1 year of myositis diagnosis in 1. All the anti-TIF1-&ggr;-Ab(+) patients with CAM satisfied the dermatomyositis (DM) criteria, including 2 possible DM sine dermatitis cases, and were characterized histologically by the presence of perifascicular atrophy, vacuolated fibers (VFs), and dense C5b-9 deposits on capillaries (dC5b-9). In contrast, 39 anti-TIF1-&ggr;-Ab(−) patients with CAM were classified into various subgroups, and characterized by a higher frequency of necrotizing autoimmune myopathy (NAM). Notably, all 7 patients with CAM classified into the NAM subgroup were anti-TIF1-&ggr;-Ab(−) and exhibited no dC5b-9 or VFs. Conclusions:CAM includes clinicohistopathologically heterogeneous disease entities. Among CAM entities, anti-TIF1-&ggr;-Ab(+) CAM has characteristically shown a close temporal association with cancer detection and the histopathologic findings of dC5b-9 and VFs, and CAM with NAM is a subset of anti-TIF1-&ggr;-Ab(−) CAM.


Brain Research Protocols | 2001

A single motor unit recording technique for studying the differential activation of corticospinal volleys by transcranial magnetic stimulation

Yasuo Terao; Yoshikazu Ugawa; Ritsuko Hanajima; Katsuyuki Machii; Toshiaki Furubayashi; Hitoshi Mochizuki; Hiroyuki Enomoto; Yasushi Shiio; Haruo Uesugi; Nobue K. Iwata; Ichiro Kanazawa

The purpose of this method is to establish a single motor unit recording technique to study the differential activation of corticospinal volleys by various types of transcranial magnetic stimulation (TMS). TMS is performed with various coil orientations over the hand or leg motor areas and surface EMG, and single motor unit recordings are made either from the studied hand or leg muscle. Transcranial electrical stimulation (TES) is also performed over the motor cortex as well as at the foramen magnum level to determine the latency of D waves. The intensity of stimulation is set just above the motor threshold for each type of stimulation. This method makes it possible to activate some I volleys (especially I1 and I3 waves) preferentially, if not selectively, from the hand and leg motor areas. The obtained results accord well with recent epidural recording studies, which lends support to the validity of this method.

Collaboration


Dive into the Yasushi Shiio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshikazu Ugawa

Fukushima Medical University

View shared research outputs
Top Co-Authors

Avatar

Toshiaki Furubayashi

Fukushima Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroyuki Enomoto

Fukushima Medical University

View shared research outputs
Top Co-Authors

Avatar

Hitoshi Mochizuki

National Defense Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge