Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takuya Katsube is active.

Publication


Featured researches published by Takuya Katsube.


Journal of the Science of Food and Agriculture | 2010

Effect of flavonol glycoside in mulberry (Morus alba L.) leaf on glucose metabolism and oxidative stress in liver in diet-induced obese mice.

Takuya Katsube; Masayuki Yamasaki; Kuninori Shiwaku; Tomoko Ishijima; Ichiro Matsumoto; Keiko Abe; Yukikazu Yamasaki

BACKGROUND Mulberry therapies on type 2 diabetic patients or streptozotocin-induced diabetic rats have been reported to improve fasting blood glucose levels. We investigated the effects of dietary consumption of mulberry-leaf powder and purified quercetin 3-(6-malonylglucoside), the quantitatively major flavonol glycoside in mulberry leaves, on glucose and lipid metabolism in high-fat diet-induced obese mice. Male C57BL/6J mice aged 8 weeks were assigned to three groups (control, mulberry leaf powder (MLP), and quercetin 3-(6-malonylglucoside) (Q3MG)) and treated with their respective diets for 8 weeks. RESULTS We found that dietary supplementation of 10 g MLP kg(-1) or 1 g Q3MG kg(-1) in high-fat diet effectively suppressed blood glucose levels. We also noted increased expression of glycolysis-related genes and suppression of thiobarbituric acid reactive substances concentrations in the liver of Q3MG group compared to control mice. CONCLUSION Dietary consumption of Q3MG, the quantitatively major flavonol glycoside in mulberry leaves, improved hyperglycemia in obese mice and reduced oxidative stress in the liver.


Food Chemistry | 2013

Effects of UV-B irradiation on the levels of anthocyanin, rutin and radical scavenging activity of buckwheat sprouts.

Yoko Tsurunaga; Tetsuya Takahashi; Takuya Katsube; Akihide Kudo; Osamu Kuramitsu; Masaki Ishiwata; Shingo Matsumoto

The effects of various light compositions on the levels of anthocyanin, rutin and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity in buckwheat (Fagopyrum esculentum Moench) sprouts were evaluated. Dark-grown 6-day-old buckwheat sprouts were irradiated with different sources of visible and ultraviolet (UV) light. Particularly, we examined the effect of UV-B at wavelengths of 260-320 nm, 280-320 nm, and 300-320 nm on the production of flavonoid compounds, using multiple fluorescent lights and cylinders that filter out certain portions of the UV-B. The results showed that irradiation with UV-B>300 nm increased the levels of anthocyanin and rutin, as well as the DPPH radical scavenging activity. When sprouts were irradiated with UV-B light at wavelengths of 260-300 nm, yellowing or withering occurred within 24h of irradiation, indicating that wavelengths in this range are detrimental to the growth of buckwheat sprouts.


Food Chemistry | 2008

Isolation and evaluation of the radical-scavenging activity of the antioxidants in the leaves of an edible plant, Mallotus japonicus.

Hiromasa Tabata; Takuya Katsube; Terumi Tsuma; Yukari Ohta; Naoto Imawaka; Toshihiko Utsumi

The antioxidative properties of a hot water extract of the leaves of Mallotus japonicus were evaluated. The extract had a high phenolic content and strong antioxidative activity, compared with green tea, rooibos tea, and red wine. Six phenolic compounds were isolated as antioxidative components by HPLC. They were identified as mallotinic acid, mallotusinic acid, corilagin, geraniin, rutin, and ellagic acid. These antioxidative compounds were subjected to DPPH radical-scavenging, superoxide radical-scavenging, and hydroxyl radical-scavenging assays, and compared with other antioxidative compounds. Four of the compounds, mallotinic acid, mallotusinic acid, corilagin and geraniin, exhibited much stronger antioxidative activity than gallic acid, rutin, ellagic acid, quercetin, and chlorogenic acid, and were as active as epigallocatechin gallate (EGCG), a strong antioxidant in green tea. Mallotus japonicus leaves are an excellent source of strong natural antioxidative materials.


Journal of Agricultural and Food Chemistry | 2008

Antiobese effects of novel saponins from edible seeds of Japanese horse chestnut (Aesculus turbinata BLUME) after treatment with wood ashes.

Hideto Kimura; Satoshi Ogawa; Takuya Katsube; Mitsuo Jisaka; Kazushige Yokota

Recently, we have identified novel saponins from edible seeds of Japanese horse chestnut ( Aesculus turbinata BLUME) after processing the natural seeds with wood ashes to remove bitterness. We attempted to determine anti-obesity effects of those saponins from edible seeds as well as natural seeds. The purified individual components of saponins from natural and edible seeds inhibited pancreatic lipase in vitro. The potency was in the order of escins > desacylescins > deacetylescins. Escins Ib and IIb as well as deacetylescins Ib and IIb with the angeloyl moiety were more potent than the corresponding Ia and IIa series with the tigloyl moiety. Moreover, in vivo anti-obesity effects of the saponin fractions were monitored for 8 weeks in mice fed high-fat diets. Saponin fractions from both seeds significantly attenuated the elevation in body weight, the mass of peritoneal adipose tissues, and plasma triacylglycerol, which was accompanied by higher contents of undigested fats in feces without changes in food intake, indicating the effective inhibition of fat digestion in vivo. Taken together, saponin fractions including desacylescins and deacetylescins from edible seeds are potentially useful for the development of nutraceutical foods with anti-obesity effects and more attenuated bitter taste.


Journal of Agricultural and Food Chemistry | 2008

Fractionation and structural characterization of polyphenolic antioxidants from seed shells of Japanese horse chestnut (Aesculus turbinata BLUME).

Satoshi Ogawa; Hideto Kimura; Ai Niimi; Takuya Katsube; Mitsuo Jisaka; Kazushige Yokota

Seed shells of the Japanese horse chestnut (Aesculus turbinata BLUME) contain high levels of polyphenolic antioxidants. These compounds were extracted, fractionated, and finally separated into three fractions, F1, F2, and F3, according to their degrees of polymerization. The structures of the isolated fractions were characterized by a combination of mass spectrometric analyses. F1 contained mainly low molecular weight phenolic substances, including procyanidin trimers. The predominant fractions F2 and F3 consisted of polymeric proanthocyanidins having a series of heteropolyflavan-3-ols, (+)-catechin/(-)-epicatechin units, and polymerization degrees of 19 and 23, respectively. The polyphenol polymers had doubly linked A-type interflavan linkages in addition to single B-type bonds without gallic acid esterified to them. The isolated polyphenolic compounds exhibited potent antioxidative activities comparable to monomeric (+)-catechin and (-)-epicatechin, or more efficacious than those monomers. The results suggest the potential usefulness of polyphenol polymers from seed shells as a source for nutraceutical factors.


Bioscience, Biotechnology, and Biochemistry | 2007

Molecular Cloning and Functional Expression of Soybean Allene Oxide Synthases

Darika Kongrit; Mitsuo Jisaka; Chitose Iwanaga; Hiroshi Yokomichi; Takuya Katsube; Kohji Nishimura; Tsutomu Nagaya; Kazushige Yokota

A plant allene oxide synthase (AOS) reacting with 13S-hydroperoxy-9Z,11E,15Z-octadecatrienoic acid (13-HPOT), a lipoxygenase product of α-linolenic acid, provides an allene oxide which functions as an intermediate for jasmonic acid (JA) synthesis, making AOS a key enzyme regulating the JA level in plants. Although AOSs in various plants have been investigated, there is only limited information about AOSs in soybean (Glycine max). In this study, we cloned and characterized two soybean AOSs, GmAOS1 and GmAOS2, sharing 95% homology in the predicted amino acid sequences. GmAOS1 and GmAOS2 were composed of 564 and 559 amino acids respectively, with predicted N-terminal chloroplast-targeting signal peptides. Both AOSs expressed in Escherichia coli were selective for 13S-hydroperoxides of α-linolenic and linoleic acids, suggesting the potential of GmAOS1 and GmAOS2 to contribute to JA synthesis. GmAOS1 and GmAOS2 were expressed in leaves, stems, and roots, suggesting broad distribution in a soybean plant.


Nutrition Research and Practice | 2013

Anti-obesity effects of hot water extract from Wasabi (Wasabia japonica Matsum.) leaves in mice fed high-fat diets

Masayuki Yamasaki; Tetsuro Ogawa; Li Wang; Takuya Katsube; Yukikazu Yamasaki; Xufeng Sun; Kuninori Shiwaku

The anti-obesity effects of a hot water extract from wasabi (Wasabia japonica Matsum.) leaves (WLE), without its specific pungent constituents, such as allyl-isothiocyanate, were investigated in high fat-diet induced mice. C57J/BL mice were fed a high-fat diet (control group) or a high-fat diet supplemented with 5% WLE (WLE group). Physical parameters and blood profiles were determined. Gene expression associated with lipid metabolism in liver and white adipose tissue were analyzed. After 120 days of feeding, significantly lower body weight gain, liver weight and epididymal white adipose tissue weight was observed in the WLE group compared to the control group. In liver gene expression within the WLE group, PPARα was significantly enhanced and SREBP-1c was significantly suppressed. Subsequent downstream genes controlled by these regulators were significantly suppressed. In epididymal white adipose tissue of the WLE group, expression of leptin, PPARγ, and C/EBPα were significantly suppressed and adiponectin was significantly enhanced. Acox, related to fatty acid oxidization in adipocytes, was also enhanced. Our results demonstrate that the WLE dietary supplement induces mild suppression of obesity in a high-fat diet induced mice, possibly due to suppression of lipid accumulation in liver and white adipose tissue.


Nutrition Research and Practice | 2015

Effects of quercetin derivatives from mulberry leaves: Improved gene expression related hepatic lipid and glucose metabolism in short-term high-fat fed mice

Xufeng Sun; Masayuki Yamasaki; Takuya Katsube; Kuninori Shiwaku

BACKGROUND/OBJECTIVES Mulberry leaves contain quercetin derivatives, which have the effects of reducing obesity and improving lipid and glucose metabolism in mice with obesity. It is not clear whether or not mulberry leaves can directly affect metabolic disorders, in the presence of obesity, because of the interaction between obesity and metabolic disorders. The aim of the current study was to assess the direct action of quercetin derivatives on metabolic disorders in non-obese conditions in short-term high-fat diet fed mice. MATERIALS/METHODS C57BL/6N mice were fed a high-fat diet, supplemented with either 0% (control), 1%, or 3% mulberry leaf powder (Mul) or 1% catechin powder for five days. Anthropometric parameters and blood biochemistry were determined, and hepatic gene expression associated with lipid and glucose metabolism was analyzed. RESULTS Body and white fat weights did not differ among the four groups. Plasma triglycerides, total cholesterol, and free fatty acids in the 1%, 3% Mul and catechin groups did not differ significantly from those of the controls, however, plasma glucose and 8-isoprostane levels were significantly reduced. Liver gene expression of gp91phox, a main component of NADPH oxidase, was significantly down-regulated, and PPAR-α, related to β-oxidation, was significantly up-regulated. FAS and GPAT, involved in lipid metabolism, were significantly down-regulated, and Ehhadh was significantly up-regulated. Glucose-metabolism related genes, L-PK and G6Pase, were significantly down-regulated, while GK was significantly up-regulated in the two Mul groups compared to the control group. CONCLUSIONS Our results suggest that the Mul quercetin derivatives can directly improve lipid and glucose metabolism by reducing oxidative stress and enhancing β-oxidation. The 1% Mul and 1% catechin groups had similar levels of polyphenol compound intake (0.4 × 10-5 vs 0.4 × 10-5 mole/5 days) and exhibited similar effects, but neither showed dose-dependent effects on lipid and glucose metabolism or oxidative stress.


Journal of Agricultural and Food Chemistry | 2016

Effects of Applied Nitrogen Amounts on the Functional Components of Mulberry (Morus alba L.) Leaves

Mari Sugiyama; Makoto Takahashi; Takuya Katsube; Akio Koyama; Hiroyuki Itamura

This study investigated the effects of applied nitrogen amounts on specific functional components in mulberry (Morus alba L.) leaves. The relationships between mineral elements and the functional components in mulberry leaves were examined using mulberry trees cultivated in different soil conditions in four cultured fields. Then, the relationships between the nitrogen levels and the leaf functional components were studied by culturing mulberry in plastic pots and experimental fields. In the common cultured fields, total nitrogen was negatively correlated with the chlorogenic acid content (R(2) = -0.48) and positively correlated with the 1-deoxynojirimycin content (R(2) = 0.60). Additionally, differences in nitrogen fertilizer application levels affected each functional component in mulberry leaves. For instance, with increased nitrogen levels, the chlorogenic acid and flavonol contents significantly decreased, but the 1-deoxynojirimycin content significantly increased. Selection of the optimal nitrogen application level is necessary to obtain the desired functional components from mulberry leaves.


Journal of the Science of Food and Agriculture | 2016

Effect of Solar Radiation on the Functional Components of Mulberry (Morus alba L.) Leaves

Mari Sugiyama; Takuya Katsube; Akio Koyama; Hiroyuki Itamura

BACKGROUND The functional components of mulberry leaves have attracted the attention of the health food industry, and increasing their concentrations is an industry goal. This study investigated the effects of solar radiation, which may influence the production of flavonol and 1-deoxynojirimycin (DNJ) functional components in mulberry leaves, by comparing a greenhouse (poor solar radiation) and outdoor (rich solar radiation) setting. RESULTS The level of flavonol in leaves cultivated in the greenhouse was markedly decreased when compared with those cultivated outdoors. In contrast, the DNJ content in greenhouse-cultivated plants was increased only slightly when compared with those cultivated outdoors. Interestingly, the flavonol content was markedly increased in the upper leaves of mulberry trees that were transferred from a greenhouse to the outdoors compared with those cultivated only in the outdoors. CONCLUSION Solar radiation conditions influence the synthesis of flavonol and DNJ, the functional components of mulberry leaves. Under high solar radiation, the flavonol level becomes very high but the DNJ level becomes slightly lower, suggesting that the impact of solar radiation is great on flavonol but small on DNJ synthesis.

Collaboration


Dive into the Takuya Katsube's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yukari Ohta

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge