Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tal Yardeni is active.

Publication


Featured researches published by Tal Yardeni.


Molecular Genetics and Metabolism | 2012

Oral monosaccharide therapies to reverse renal and muscle hyposialylation in a mouse model of GNE myopathy

Terren K. Niethamer; Tal Yardeni; Petcharat Leoyklang; Carla Ciccone; Adrian Astiz-Martinez; Katherine Jacobs; Heidi Dorward; Patricia M. Zerfas; William A. Gahl; Marjan Huizing

GNE myopathy, previously termed hereditary inclusion body myopathy (HIBM), is an adult-onset neuromuscular disorder characterized by progressive muscle weakness. The disorder results from biallelic mutations in GNE, encoding UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase, the key enzyme of sialic acid synthesis. GNE myopathy, associated with impaired glycan sialylation, has no approved therapy. Here we test potential sialylation-increasing monosaccharides for their effectiveness in prophylaxis (at the embryonic and neonatal stages) and therapy (after the onset of symptoms) by evaluating renal and muscle hyposialylation in a knock-in mouse model (Gne p.M712T) of GNE myopathy. We demonstrate that oral mannosamine (ManN), but not sialic acid (Neu5Ac), mannose (Man), galactose (Gal), or glucosamine (GlcN), administered to pregnant female mice has a similar prophylactic effect on renal hyposialylation, pathology and neonatal survival of mutant offspring, as previously shown for N-acetylmannosamine (ManNAc) therapy. ManN may be converted to ManNAc by a direct, yet unknown, pathway, or may act through another mode of action. The other sugars (Man, Gal, GlcN) may either not cross the placental barrier (Neu5Ac) and/or may not be able to directly increase sialylation. Because GNE myopathy patients will likely require treatment in adulthood after onset of symptoms, we also administered ManNAc (1 or 2g/kg/day for 12 weeks), Neu5Ac (2 g/kg/day for 12 weeks), or ManN (2 g/kg/day for 6 weeks) in drinking water to 6 month old mutant Gne p.M712T mice. All three therapies markedly improved the muscle and renal hyposialylation, as evidenced by lectin histochemistry for overall sialylation status and immunoblotting of specific sialoproteins. These preclinical data strongly support further evaluation of oral ManNAc, Neu5Ac and ManN as therapy for GNE myopathy and conceivably for certain glomerular diseases with hyposialylation.


Journal of Human Genetics | 2008

Genotype–phenotype correlations analysis of mutations in the phenylalanine hydroxylase (PAH) gene

Dani Bercovich; Arava Elimelech; Joël Zlotogora; Sigal Korem; Tal Yardeni; Nurit Gal; Nurit Goldstein; Bela Vilensky; Roni Segev; Smadar Avraham; Ron Loewenthal; Gerard Schwartz; Yair Anikster

AbstractThe aims of our research were to define the genotype–phenotype correlations of mutations in the phenylalanine hydroxylase (PAH) gene that cause phenylketonuria (PKU) among the Israeli population. The mutation spectrum of the PAH gene in PKU patients in Israel is described, along with a discussion on genotype–phenotype correlations. By using polymerase chain reaction/denaturing high-performance liquid chromatography (PCR/dHPLC) and DNA sequencing, we screened all exons of the PAH gene in 180 unrelated patients with four different PKU phenotypes [classic PKU, moderate PKU, mild PKU, and mild hyperphenylalaninemia (MHP)]. In 63.2% of patient genotypes, the metabolic phenotype could be predicted, though evidence is also found for both phenotypic inconsistencies among subjects with more than one type of mutation in the PAH gene. Data analysis revealed that about 25% of patients could participate in the future in (6R)-L-erythro-5, 6, 7, 8-tetrahydrobiopterin (BH4) treatment trials according to their mutation genotypes. This study enables us to construct a national database in Israel that will serve as a valuable tool for genetic counseling and a prognostic evaluation of future cases of PKU.


Human Gene Therapy | 2011

Hereditary Inclusion Body Myopathy: Single Patient Response to Intravenous Dosing of GNE Gene Lipoplex

Gregory Nemunaitis; Chris M. Jay; Phillip B. Maples; William A. Gahl; Marjan Huizing; Tal Yardeni; Alex W. Tong; Anagha P. Phadke; Beena O. Pappen; Cynthia Bedell; Henry Allen; Cathy Hernandez; Nancy Smyth Templeton; Joseph A. Kuhn; Neil Senzer; John Nemunaitis

Hereditary inclusion body myopathy (HIBM) is an autosomal recessive adult-onset myopathy due to mutations in the GNE (UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase) gene. Affected patients have no therapeutic options. We have previously demonstrated in preclinical testing the ability to safely correct GNE gene function through liposomal delivery of the wild-type GNE gene. Results were verified in a single patient treated by intravenous infusion of GNE gene lipoplex. A single patient (patient 001) with severe HIBM treated with a compassionate investigational new drug received seven doses of GNE gene lipoplex via intravenous infusion at the following doses: 0.4, 0.4, 1.0, 4.0, 5.0, 6.0, and 7.0 mg of DNA. GNE transgene expression, downstream induction of sialic acid, safety, and muscle function were evaluated. Transient low-grade fever, myalgia, tachycardia, transaminase elevation, hyponatremia, and hypotension were observed after infusion of each dose of GNE gene lipoplex. Quadriceps muscle expression of the delivered GNE, plasmid, and RNA was observed 24 hr after the 5.0-mg dose and at significantly greater levels 72 hr after the 7.0-mg infusion in comparison with expression in quadriceps muscle immediately before infusion. Sialic acid-related proteins were increased and stabilization in the decline of muscle strength was observed. We conclude that clinical safety and activity have been demonstrated with intravenous infusion of GNE gene lipoplex. Further assessment will involve a phase I trial of intravenous administration of GNE gene lipoplex in individuals with less advanced HIBM with more muscle function.


Topics in Current Chemistry | 2013

UDP-GlcNAc 2-Epimerase/ManNAc Kinase (GNE): A Master Regulator of Sialic Acid Synthesis

Stephan Hinderlich; Wenke Weidemann; Tal Yardeni; Rüdiger Horstkorte; Marjan Huizing

UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase is the key enzyme of sialic acid biosynthesis in vertebrates. It catalyzes the first two steps of the cytosolic formation of CMP-N-acetylneuraminic acid from UDP-N-acetylglucosamine. In this review we give an overview of structure, biochemistry, and genetics of the bifunctional enzyme and its complex regulation. Furthermore, we will focus on diseases related to UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase.


Annals of Human Genetics | 2008

A Mutation Analysis of the Phenylalanine Hydroxylase (PAH) Gene in the Israeli Population

Dani Bercovich; Arava Elimelech; Tal Yardeni; Sigal Korem; Joël Zlotogora; N. Gal; Nurit Goldstein; Bela Vilensky; R. Segev; S. Avraham; Ron Loewenthal; Gerard Schwartz; Yair Anikster

Hyperphenylalaninemia (HPA) is a group of diseases characterized by a persistent elevation of phenylalanine levels in tissues and biological fluids. The most frequent form is phenylalanine hydroxylase deficiency, causing phenylketonuria (PKU). Among 159 Israeli patients (Jews, Muslim and Christian Arabs and Druze) with HPA, in whom at least one of the mutations was characterized, a total of 43 different mutations were detected, including seven novel ones. PKU was very rare among Ashkenazi Jews and relatively frequent among Jews from Yemen, the Caucasian Mountains, Bukhara and Tunisia. The mutations responsible for the high frequency were: exon3del (Yemenite Jews), L48S (Tunisian Jews) and E178G, P281L and L48S (Jews from the Caucasian Mountains and Bukhara). Among the non‐Jewish Israeli citizens, the disease was relatively frequent in the Negev and in the Nazareth vicinity, and in many localities a unique mutation was detected, often in a single family. While marked genetic heterogeneity was observed in the Arab and Jewish populations, only one mutation A300S, was frequent in all of the communities. Several of the other frequent mutations were shared by the non‐Ashkenazi Jews and Arabs; none were mutual to Ashkenazi Jews and Arabs.


Biochemistry | 2011

Identification, Tissue Distribution and Molecular Modeling of Novel Human Isoforms of the Key Enzyme in Sialic Acid Synthesis, UDP-GlcNAc 2-epimerase/ManNAc Kinase

Tal Yardeni; Tsering Choekyi; Katherine Jacobs; Carla Ciccone; Katherine Patzel; Yair Anikster; William A. Gahl; Natalya Kurochkina; Marjan Huizing

UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) catalyzes the first two committed steps in sialic acid synthesis. In addition to the three previously described human GNE isoforms (hGNE1-hGNE3), our database and polymerase chain reaction analysis yielded five additional human isoforms (hGNE4-hGNE8). hGNE1 is the ubiquitously expressed major isoform, while the hGNE2-hGNE8 isoforms are differentially expressed and may act as tissue-specific regulators of sialylation. hGNE2 and hGNE7 display a 31-residue N-terminal extension compared to hGNE1. On the basis of similarities to kinases and helicases, this extension does not seem to hinder the epimerase enzymatic active site. hGNE3 and hGNE8 contain a 55-residue N-terminal deletion and a 50-residue N-terminal extension compared to hGNE1. The size and secondary structures of these fragments are similar, and modeling predicted that these modifications do not affect the overall fold compared to that of hGNE1. However, the epimerase enzymatic activity of GNE3 and GNE8 is likely absent, because the deleted fragment contains important substrate binding residues in homologous bacterial epimerases. hGNE5-hGNE8 have a 53-residue deletion, which was assigned a role in substrate (UDP-GlcNAc) binding. Deletion of this fragment likely eliminates epimerase enzymatic activity. Our findings imply that GNE is subject to evolutionary mechanisms to improve cellular functions, without increasing the number of genes. Our expression and modeling data contribute to elucidation of the complex functional and regulatory mechanisms of human GNE and may contribute to further elucidating the pathology and treatment strategies of the human GNE-opathies sialuria and hereditary inclusion body myopathy.


American Journal of Pathology | 2012

The Gne M712T Mouse as a Model for Human Glomerulopathy

Sravan Kakani; Tal Yardeni; Justin Poling; Carla Ciccone; Terren K. Niethamer; Enriko Klootwijk; Irini Manoli; Daniel Darvish; Shelley Hoogstraten-Miller; Patricia M. Zerfas; E Tian; Kelly G. Ten Hagen; Jeffrey B. Kopp; William A. Gahl; Marjan Huizing

Pathological glomerular hyposialylation has been implicated in certain unexplained glomerulopathies, including minimal change nephrosis, membranous glomerulonephritis, and IgA nephropathy. We studied our previously established mouse model carrying a homozygous mutation in the key enzyme of sialic acid biosynthesis, N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. Mutant mice died before postnatal day 3 (P3) from severe glomerulopathy with podocyte effacement and segmental glomerular basement membrane splitting due to hyposialylation. Administration of the sialic acid precursor N-acetylmannosamine (ManNAc) led to improved sialylation and survival of mutant pups beyond P3. We determined the onset of the glomerulopathy in the embryonic stage. A lectin panel, distinguishing normally sialylated from hyposialylated glycans, used WGA, SNA, PNA, Jacalin, HPA, and VVA, indicating glomerular hyposialylation of predominantly O-linked glycoproteins in mutant mice. The glomerular glycoproteins nephrin and podocalyxin were hyposialylated in this unique murine model. ManNAc treatment appeared to ameliorate the hyposialylation status of mutant mice, indicated by a lectin histochemistry pattern similar to that of wild-type mice, with improved sialylation of both nephrin and podocalyxin, as well as reduced albuminuria compared with untreated mutant mice. These findings suggest application of our lectin panel for categorizing human kidney specimens based on glomerular sialylation status. Moreover, the partial restoration of glomerular architecture in ManNAc-treated mice highlights ManNAc as a potential treatment for humans affected with disorders of glomerular hyposialylation.


Glycobiology | 2010

Molecular modeling of the bifunctional enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase and predictions of structural effects of mutations associated with HIBM and sialuria.

Natalya Kurochkina; Tal Yardeni; Marjan Huizing

The bifunctional enzyme UDP-GlcNAc 2-epimerase/ ManNAc kinase (GNE/MNK), encoded by the GNE gene, catalyzes the first two committed, rate-limiting steps in the biosynthesis of N-acetylneuraminic acid (sialic acid). GNE/MNK is feedback inhibited by binding of the downstream product, CMP-sialic acid in its allosteric site. GNE mutations can result in two human disorders, hereditary inclusion body myopathy (HIBM) or sialuria. So far, no active site geometry predictions or conformational transitions involved with function are available for mammalian GNE/MNK. The N-terminal GNE domain is homologous to various prokaryotic 2-epimerases, some of which have solved crystallographic structures. The C-terminal MNK domain belongs to the sugar kinases superfamily; its crystallographic structure is solved at 2.84 A and three-dimensional structures have also been reported for several other kinases. In this work, we employed available structural data of GNE/MNK homologs to model the active sites of human GNE/MNK and identify critical amino acid residues responsible for interactions with substrates. In addition, we modeled effects of GNE/MNK missense mutations associated with HIBM or sialuria on helix arrangement, substrate binding, and enzyme action. We found that all reported mutations are associated with the active sites or secondary structure interfaces of GNE/MNK. The Persian-Jewish HIBM founder mutation p.M712T is located at the interface alpha4alpha10 and likely affects GlcNAc, Mg2+, and ATP binding. This work contributes to further understanding of GNE/MNK function and ligand binding, which may assist future studies for therapeutic options that target misfolded GNE/MNK in HIBM and/or sialuria.


Journal of Inherited Metabolic Disease | 2014

Non-specific accumulation of glycosphingolipids in GNE myopathy.

Katherine Patzel; Tal Yardeni; Erell Le Poëc-Celic; Petcharat Leoyklang; Heidi Dorward; Dominic S. Alonzi; Nikolay V. Kukushkin; Bixue Xu; Yongmin Zhang; Matthieu Sollogoub; Yves Blériot; William A. Gahl; Marjan Huizing; Terry D. Butters

BackgroundUDP-GlcNAc 2-epimerase/ManNAc 6-kinase (GNE) is a bifunctional enzyme responsible for the first committed steps in the synthesis of sialic acid, a common terminal monosaccharide in both protein and lipid glycosylation. GNE mutations are responsible for a rare autosomal recessive neuromuscular disorder, GNE myopathy (also called hereditary inclusion body myopathy). The connection between the impairment of sialic acid synthesis and muscle pathology in GNE myopathy remains poorly understood.MethodsGlycosphingolipid (GSL) analysis was performed by HPLC in multiple models of GNE myopathy, including patients’ fibroblasts and plasma, control fibroblasts with inhibited GNE epimerase activity through a novel imino sugar, and tissues of GneM712T/M712T knock-in mice.ResultsNot only neutral GSLs, but also sialylated GSLs, were significantly increased compared to controls in all tested models of GNE myopathy. Treatment of GNE myopathy fibroblasts with N-acetylmannosamine (ManNAc), a sialic acid precursor downstream of GNE epimerase activity, ameliorated the increased total GSL concentrations.ConclusionGNE myopathy models have increased total GSL concentrations. ManNAc supplementation results in decrease of GSL levels, linking abnormal increase of total GSLs in GNE myopathy to defects in the sialic acid biosynthetic pathway. These data advocate for further exploring GSL concentrations as an informative biomarker, not only for GNE myopathy, but also for other disorders of sialic acid metabolism.


Journal of Human Genetics | 2010

DHPLC screening for mutations in progressive familial intrahepatic cholestasis patients

Rivka Shapiro; Yair Anikster; Tal Yardeni; Sigal Korem; Korina Hartman; Raanan Shamir; Efrat Broide; Arie Levine; Yoram Bujanover; Dani Bercovich

Progressive familial intrahepatic cholestasis (PFIC) is a group of rare heterogeneous autosomal recessive disorders characterized by metabolic defects in biliary proteins involved in the formation and transfer of bile acids in the liver. The genotype–phenotype correlation is not always clear. Mutations in the ATP8B1, BSEP and MDR3 genes have been associated with PFIC1, PFIC2 and PFIC3, respectively. This study sought to characterize the molecular genetic basis for PFIC subtypes in Israel. It was conducted on 14 children with PFIC and their families; 10 with a PFIC1 or PFIC2 phenotype and 4 with a PFIC3 phenotype. Using denaturing high-performance liquid chromatography (DHPLC), five different mutations were identified in four affected families: three novel mutations in BSEP (G19R-g181c, S226L-c803t and G877R-g2755a), one novel mutation in MDR3 (IVS14+6 t/c) and one heterozygous mutation in ATP8B1 (R600W, in a family with the PFIC1/PFIC2 phenotype). The cause of PFIC was identified in 20% of the families tested. These findings indicate the probable involvement of additional genes in PFIC and the need for further studies to determine whether the abnormality lies on the RNA or protein level. A better understanding of the phenotype–genotype correlation in PFIC will lead to improved diagnoses and treatments.

Collaboration


Dive into the Tal Yardeni's collaboration.

Top Co-Authors

Avatar

Marjan Huizing

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

William A. Gahl

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Carla Ciccone

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katherine Jacobs

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Terren K. Niethamer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Dani Bercovich

Tel-Hai Academic College

View shared research outputs
Top Co-Authors

Avatar

Sigal Korem

Tel-Hai Academic College

View shared research outputs
Top Co-Authors

Avatar

Heidi Dorward

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Katherine Patzel

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge