Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carla Ciccone is active.

Publication


Featured researches published by Carla Ciccone.


Journal of Clinical Investigation | 2007

Mutation in the key enzyme of sialic acid biosynthesis causes severe glomerular proteinuria and is rescued by N -acetylmannosamine

Belinda Galeano; Riko Klootwijk; Irini Manoli; MaoSen Sun; Carla Ciccone; Daniel Darvish; Matthew F. Starost; Patricia M. Zerfas; Victoria Hoffmann; Shelley Hoogstraten-Miller; Donna Krasnewich; William A. Gahl; Marjan Huizing

Mutations in the key enzyme of sialic acid biosynthesis, uridine diphospho-N-acetylglucosamine 2-epimerase/N-acetylmannosamine (ManNAc) kinase (GNE/MNK), result in hereditary inclusion body myopathy (HIBM), an adult-onset, progressive neuromuscular disorder. We created knockin mice harboring the M712T Gne/Mnk mutation. Homozygous mutant (Gne(M712T/M712T)) mice did not survive beyond P3. At P2, significantly decreased Gne-epimerase activity was observed in Gne(M712T/M712T) muscle, but no myopathic features were apparent. Rather, homozygous mutant mice had glomerular hematuria, proteinuria, and podocytopathy. Renal findings included segmental splitting of the glomerular basement membrane, effacement of podocyte foot processes, and reduced sialylation of the major podocyte sialoprotein, podocalyxin. ManNAc administration yielded survival beyond P3 in 43% of the Gne(M712T/M712T) pups. Survivors exhibited improved renal histology, increased sialylation of podocalyxin, and increased Gne/Mnk protein expression and Gne-epimerase activities. These findings establish this Gne(M712T/M712T) knockin mouse as what we believe to be the first genetic model of podocyte injury and segmental glomerular basement membrane splitting due to hyposialylation. The results also support evaluation of ManNAc as a treatment not only for HIBM but also for renal disorders involving proteinuria and hematuria due to podocytopathy and/or segmental splitting of the glomerular basement membrane.


American Journal of Human Genetics | 2011

A BLOC-1 Mutation Screen Reveals that PLDN Is Mutated in Hermansky-Pudlak Syndrome Type 9

Andrew R. Cullinane; James A. Curry; Carmelo Carmona-Rivera; C. Gail Summers; Carla Ciccone; Nicholas D. Cardillo; Heidi Dorward; Richard A. Hess; James G. White; David Adams; Marjan Huizing; William A. Gahl

Hermansky-Pudlak Syndrome (HPS) is an autosomal-recessive condition characterized by oculocutaneous albinism and a bleeding diathesis due to absent platelet delta granules. HPS is a genetically heterogeneous disorder of intracellular vesicle biogenesis. We first screened all our patients with HPS-like symptoms for mutations in the genes responsible for HPS-1 through HPS-6 and found no functional mutations in 38 individuals. We then examined all eight genes encoding the biogenesis of lysosome-related organelles complex-1, or BLOC-1, proteins in these individuals. This identified a homozygous nonsense mutation in PLDN in a boy with characteristic features of HPS. PLDN is mutated in the HPS mouse model pallid and encodes the protein pallidin, which interacts with the early endosomal t-SNARE syntaxin-13. We could not detect any full-length pallidin in our patients cells despite normal mRNA expression of the mutant transcript. We could detect an alternative transcript that would skip the exon that harbored the mutation, but we demonstrate that if this transcript is translated into protein, although it correctly localizes to early endosomes, it does not interact with syntaxin-13. In our patients melanocytes, the melanogenic protein TYRP1 showed aberrant localization, an increase in plasma-membrane trafficking, and a failure to reach melanosomes, explaining the boys severe albinism and establishing his diagnosis as HPS-9.


Clinical Journal of The American Society of Nephrology | 2013

1,25-(OH)2D-24 Hydroxylase (CYP24A1) Deficiency as a Cause of Nephrolithiasis.

Galina Nesterova; May Christine V. Malicdan; Kaori Yasuda; Toshiyuki Sakaki; Thierry Vilboux; Carla Ciccone; Ronald L. Horst; Yan Huang; Gretchen Golas; Wendy J. Introne; Marjan Huizing; David Adams; Cornelius F. Boerkoel; Michael T. Collins; William A. Gahl

BACKGROUND AND OBJECTIVES Elevated serum vitamin D with hypercalciuria can result in nephrocalcinosis and nephrolithiasis. This study evaluated the cause of excess 1,25-dihydroxycholecalciferol (1α,25(OH)2D3) in the development of those disorders in two individuals. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Two patients with elevated vitamin D levels and nephrocalcinosis or nephrolithiasis were investigated at the National Institutes of Health (NIH) Clinical Center and the NIH Undiagnosed Diseases Program, by measuring calcium, phosphate, and vitamin D metabolites, and by performing CYP24A1 mutation analysis. RESULTS Both patients exhibited hypercalciuria, hypercalcemia, low parathyroid hormone, elevated vitamin D (1α,25(OH)2D3), normal 25-OHD3, decreased 24,25(OH)2D, and undetectable activity of 1,25(OH)2D-24-hydroxylase (CYP24A1), the enzyme that inactivates 1α,25(OH)2D3. Both patients had bi-allelic mutations in CYP24A1 leading to loss of function of this enzyme. On the basis of dbSNP data, the frequency of predicted deleterious bi-allelic CYP24A1 variants in the general population is estimated to be as high as 4%-20%. CONCLUSIONS The results of this study show that 1,25(OH)2D-24-hydroxylase deficiency due to bi-allelic mutations in CYP24A1 causes elevated serum vitamin D, hypercalciuria, nephrocalcinosis, and renal stones.


Journal of Investigative Dermatology | 2011

Homozygosity Mapping and Whole-Exome Sequencing to Detect SLC45A2 and G6PC3 Mutations in a Single Patient with Oculocutaneous Albinism and Neutropenia

Andrew R. Cullinane; Thierry Vilboux; Kevin P. O'Brien; James A. Curry; Dawn M. Maynard; Hannah Carlson-Donohoe; Carla Ciccone; Thomas C. Markello; Meral Gunay-Aygun; Marjan Huizing; William A. Gahl

We evaluated a 32 year-old woman whose oculocutaneous albinism, bleeding diathesis, neutropenia, and history of recurrent infections prompted consideration of the diagnosis of Hermansky-Pudlak syndrome type 2 (HPS-2). This was ruled out due to the presence of platelet delta granules and absence of AP3B1 mutations. Since parental consanguinity suggested an autosomal recessive mode of inheritance, we employed homozygosity mapping, followed by whole exome sequencing, to identify two candidate disease-causing genes, SLC45A2 and G6PC3. Conventional di-deoxy sequencing confirmed pathogenic mutations in SLC45A2, associated with oculocutaneous albinism type 4 (OCA-4), and G6PC3, associated with neutropenia. The substantial reduction of SLC45A2 protein in the patient’s melanocytes caused the mis-localization of tyrosinase from melanosomes to the plasma membrane and also led to the incorporation of tyrosinase into exosomes and secretion into the culture medium, explaining the hypopigmentation in OCA-4. Our patient’s G6PC3 mRNA expression level was also reduced, leading to increased apoptosis of her fibroblasts under ER stress. This report describes the first North American patient with OCA-4, the first culture of human OCA-4 melanocytes, and the use of homozygosity mapping followed by whole exome sequencing to identify disease-causing mutations in multiple genes in a single affected individual.


BMC Neurology | 2007

Intravenous immune globulin in hereditary inclusion body myopathy: a pilot study

Susan Sparks; Goran Rakocevic; Galen O. Joe; Irini Manoli; Joseph A. Shrader; Michael O. Harris-Love; Barbara C. Sonies; Carla Ciccone; Heidi Dorward; Donna Krasnewich; Marjan Huizing; Marinos C. Dalakas; William A. Gahl

BackgroundHereditary Inclusion Body Myopathy (HIBM) is an autosomal recessive, adult onset, non-inflammatory neuromuscular disorder with no effective treatment. The causative gene, GNE, codes for UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase, which catalyzes the first two reactions in the synthesis of sialic acid. Reduced sialylation of muscle glycoproteins, such as α-dystroglycan and neural cell adhesion molecule (NCAM), has been reported in HIBM.MethodsWe treated 4 HIBM patients with intravenous immune globulin (IVIG), in order to provide sialic acid, because IgG contains 8 μmol of sialic acid/g. IVIG was infused as a loading dose of 1 g/kg on two consecutive days followed by 3 doses of 400 mg/kg at weekly intervals.ResultsFor all four patients, mean quadriceps strength improved from 19.0 kg at baseline to 23.2 kg (+22%) directly after IVIG loading to 25.6 kg (+35%) at the end of the study. Mean shoulder strength improved from 4.1 kg at baseline to 5.9 kg (+44%) directly after IVIG loading to 6.0 kg (+46%) at the end of the study. The composite improvement for 8 other muscle groups was 5% after the initial loading and 19% by the end of the study. Esophageal motility and lingual strength improved in the patients with abnormal barium swallows. Objective measures of functional improvement gave variable results, but the patients experienced improvements in daily activities that they considered clinically significant. Immunohistochemical staining and immunoblotting of muscle biopsies for α-dystroglycan and NCAM did not provide consistent evidence for increased sialylation after IVIG treatment. Side effects were limited to transient headaches and vomiting.ConclusionThe mild benefits in muscle strength experienced by HIBM patients after IVIG treatment may be related to the provision of sialic acid supplied by IVIG. Other sources of sialic acid are being explored as treatment options for HIBM.


Human Mutation | 2014

Mutation update for GNE gene variants associated with GNE myopathy.

Frank Celeste; Thierry Vilboux; Carla Ciccone; John Karl de Dios; May Christine V. Malicdan; Petcharat Leoyklang; John C. McKew; William A. Gahl; Nuria Carrillo-Carrasco; Marjan Huizing

The GNE gene encodes the rate‐limiting, bifunctional enzyme of sialic acid biosynthesis, uridine diphosphate‐N‐acetylglucosamine 2‐epimerase/N‐acetylmannosamine kinase (GNE). Biallelic GNE mutations underlie GNE myopathy, an adult‐onset progressive myopathy. GNE myopathy‐associated GNE mutations are predominantly missense, resulting in reduced, but not absent, GNE enzyme activities. The exact pathomechanism of GNE myopathy remains unknown, but likely involves aberrant (muscle) sialylation. Here, we summarize 154 reported and novel GNE variants associated with GNE myopathy, including 122 missense, 11 nonsense, 14 insertion/deletions, and seven intronic variants. All variants were deposited in the online GNE variation database (http://www.dmd.nl/nmdb2/home.php?select_db=GNE). We report the predicted effects on protein function of all variants well as the predicted effects on epimerase and/or kinase enzymatic activities of selected variants. By analyzing exome sequence databases, we identified three frequently occurring, unreported GNE missense variants/polymorphisms, important for future sequence interpretations. Based on allele frequencies, we estimate the world‐wide prevalence of GNE myopathy to be ∼4–21/1,000,000. This previously unrecognized high prevalence confirms suspicions that many patients may escape diagnosis. Awareness among physicians for GNE myopathy is essential for the identification of new patients, which is required for better understanding of the disorders pathomechanism and for the success of ongoing treatment trials.


Molecular Genetics and Metabolism | 2012

Oral monosaccharide therapies to reverse renal and muscle hyposialylation in a mouse model of GNE myopathy

Terren K. Niethamer; Tal Yardeni; Petcharat Leoyklang; Carla Ciccone; Adrian Astiz-Martinez; Katherine Jacobs; Heidi Dorward; Patricia M. Zerfas; William A. Gahl; Marjan Huizing

GNE myopathy, previously termed hereditary inclusion body myopathy (HIBM), is an adult-onset neuromuscular disorder characterized by progressive muscle weakness. The disorder results from biallelic mutations in GNE, encoding UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase, the key enzyme of sialic acid synthesis. GNE myopathy, associated with impaired glycan sialylation, has no approved therapy. Here we test potential sialylation-increasing monosaccharides for their effectiveness in prophylaxis (at the embryonic and neonatal stages) and therapy (after the onset of symptoms) by evaluating renal and muscle hyposialylation in a knock-in mouse model (Gne p.M712T) of GNE myopathy. We demonstrate that oral mannosamine (ManN), but not sialic acid (Neu5Ac), mannose (Man), galactose (Gal), or glucosamine (GlcN), administered to pregnant female mice has a similar prophylactic effect on renal hyposialylation, pathology and neonatal survival of mutant offspring, as previously shown for N-acetylmannosamine (ManNAc) therapy. ManN may be converted to ManNAc by a direct, yet unknown, pathway, or may act through another mode of action. The other sugars (Man, Gal, GlcN) may either not cross the placental barrier (Neu5Ac) and/or may not be able to directly increase sialylation. Because GNE myopathy patients will likely require treatment in adulthood after onset of symptoms, we also administered ManNAc (1 or 2g/kg/day for 12 weeks), Neu5Ac (2 g/kg/day for 12 weeks), or ManN (2 g/kg/day for 6 weeks) in drinking water to 6 month old mutant Gne p.M712T mice. All three therapies markedly improved the muscle and renal hyposialylation, as evidenced by lectin histochemistry for overall sialylation status and immunoblotting of specific sialoproteins. These preclinical data strongly support further evaluation of oral ManNAc, Neu5Ac and ManN as therapy for GNE myopathy and conceivably for certain glomerular diseases with hyposialylation.


Development | 2010

A model of Costeff Syndrome reveals metabolic and protective functions of mitochondrial OPA3

Wuhong Pei; Lisa E. Kratz; Isa Bernardini; Raman Sood; Tohei Yokogawa; Heidi Dorward; Carla Ciccone; Richard I. Kelley; Yair Anikster; Harold A. Burgess; Marjan Huizing; Benjamin Feldman

Costeff Syndrome, which is caused by mutations in the OPTIC ATROPHY 3 (OPA3) gene, is an early-onset syndrome characterized by urinary excretion of 3-methylglutaconic acid (MGC), optic atrophy and movement disorders, including ataxia and extrapyramidal dysfunction. The OPA3 protein is enriched in the inner mitochondrial membrane and has mitochondrial targeting signals, but a requirement for mitochondrial localization has not been demonstrated. We find zebrafish opa3 mRNA to be expressed in the optic nerve and retinal layers, the counterparts of which in humans have high mitochondrial activity. Transcripts of zebrafish opa3 are also expressed in the embryonic brain, inner ear, heart, liver, intestine and swim bladder. We isolated a zebrafish opa3 null allele for which homozygous mutants display increased MGC levels, optic nerve deficits, ataxia and an extrapyramidal movement disorder. This correspondence of metabolic, ophthalmologic and movement abnormalities between humans and zebrafish demonstrates a phylogenetic conservation of OPA3 function. We also find that delivery of exogenous Opa3 can reduce increased MGC levels in opa3 mutants, and this reduction requires the mitochondrial localization signals of Opa3. By manipulating MGC precursor availability, we infer that elevated MGC in opa3 mutants derives from extra-mitochondrial HMG-CoA through a non-canonical pathway. The opa3 mutants have normal mitochondrial oxidative phosphorylation profiles, but are nonetheless sensitive to inhibitors of the electron transport chain, which supports clinical recommendations that individuals with Costeff Syndrome avoid mitochondria-damaging agents. In summary, this paper introduces a faithful Costeff Syndrome model and demonstrates a requirement for mitochondrial OPA3 to limit HMG-CoA-derived MGC and protect the electron transport chain against inhibitory compounds.


PLOS ONE | 2011

Molecular Analysis of the Retinoic Acid Induced 1 Gene (RAI1) in Patients with Suspected Smith-Magenis Syndrome without the 17p11.2 Deletion

Thierry Vilboux; Carla Ciccone; Jan Blancato; Gerald F. Cox; Charu Deshpande; Wendy J. Introne; William A. Gahl; Ann C.M. Smith; Marjan Huizing

Smith-Magenis syndrome (SMS) is a complex neurobehavioral disorder characterized by multiple congenital anomalies. The syndrome is primarily ascribed to a ∼3.7 Mb de novo deletion on chromosome 17p11.2. Haploinsufficiency of multiple genes likely underlies the complex clinical phenotype. RAI1 (Retinoic Acid Induced 1) is recognized as a major gene involved in the SMS phenotype. Extensive genetic and clinical analyses of 36 patients with SMS-like features, but without the 17p11.2 microdeletion, yielded 10 patients with RAI1 variants, including 4 with de novo deleterious mutations, and 6 with novel missense variants, 5 of which were familial. Haplotype analysis showed two major RAI1 haplotypes in our primarily Caucasian cohort; the novel RAI1 variants did not occur in a preferred haplotype. RNA analysis revealed that RAI1 mRNA expression was significantly decreased in cells of patients with the common 17p11.2 deletion, as well as in those with de novo RAI1 variants. Expression levels varied in patients with familial RAI1 variants and in non-17p11.2 deleted patients without identified RAI1 defects. No correlation between SNP haplotype and RAI1 expression was found. Two clinical features, ocular abnormalities and polyembolokoilomania (object insertion), were significantly correlated with decreased RAI1 expression. While not significantly correlated, the presence of hearing loss, seizures, hoarse voice, childhood onset of obesity and specific behavioral aspects and the absence of immunologic abnormalities and cardiovascular or renal structural anomalies, appeared to be specific for the de novo RAI1 subgroup. Recognition of the combination of these features will assist in referral for RAI1 analysis of patients with SMS-like features without detectable microdeletion of 17p11.2. Moreover, RAI1 expression emerged as a genetic target for development of therapeutic interventions for SMS.


Biochemistry | 2011

Identification, Tissue Distribution and Molecular Modeling of Novel Human Isoforms of the Key Enzyme in Sialic Acid Synthesis, UDP-GlcNAc 2-epimerase/ManNAc Kinase

Tal Yardeni; Tsering Choekyi; Katherine Jacobs; Carla Ciccone; Katherine Patzel; Yair Anikster; William A. Gahl; Natalya Kurochkina; Marjan Huizing

UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) catalyzes the first two committed steps in sialic acid synthesis. In addition to the three previously described human GNE isoforms (hGNE1-hGNE3), our database and polymerase chain reaction analysis yielded five additional human isoforms (hGNE4-hGNE8). hGNE1 is the ubiquitously expressed major isoform, while the hGNE2-hGNE8 isoforms are differentially expressed and may act as tissue-specific regulators of sialylation. hGNE2 and hGNE7 display a 31-residue N-terminal extension compared to hGNE1. On the basis of similarities to kinases and helicases, this extension does not seem to hinder the epimerase enzymatic active site. hGNE3 and hGNE8 contain a 55-residue N-terminal deletion and a 50-residue N-terminal extension compared to hGNE1. The size and secondary structures of these fragments are similar, and modeling predicted that these modifications do not affect the overall fold compared to that of hGNE1. However, the epimerase enzymatic activity of GNE3 and GNE8 is likely absent, because the deleted fragment contains important substrate binding residues in homologous bacterial epimerases. hGNE5-hGNE8 have a 53-residue deletion, which was assigned a role in substrate (UDP-GlcNAc) binding. Deletion of this fragment likely eliminates epimerase enzymatic activity. Our findings imply that GNE is subject to evolutionary mechanisms to improve cellular functions, without increasing the number of genes. Our expression and modeling data contribute to elucidation of the complex functional and regulatory mechanisms of human GNE and may contribute to further elucidating the pathology and treatment strategies of the human GNE-opathies sialuria and hereditary inclusion body myopathy.

Collaboration


Dive into the Carla Ciccone's collaboration.

Top Co-Authors

Avatar

Marjan Huizing

Government of the United States of America

View shared research outputs
Top Co-Authors

Avatar

William A. Gahl

Government of the United States of America

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heidi Dorward

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Thierry Vilboux

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Donna Krasnewich

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Paul J.M. Savelkoul

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Frank Celeste

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Irini Manoli

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Tal Yardeni

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge