Tamako Matsuhashi
University of Tokyo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tamako Matsuhashi.
Animal Science Journal | 2013
Atsushi Ishii; Keita Yamaji; Yoshinobu Uemoto; Nanae Sasago; Eiji Kobayashi; Naohiko Kobayashi; Tamako Matsuhashi; Shin Maruyama; Hirokazu Matsumoto; Shinji Sasazaki; Hideyuki Mannen
Fatty acid composition is one of the important traits in beef. The aim of this study was to identify candidate genomic regions for fatty acid composition by genome-wide association study with 50 K single nucleotide polymorphism (SNP) array in Japanese Black cattle. A total of 461 individuals and 40 657 SNPs were used in this study. We applied genome-wide rapid association using mixed model and regression (GRAMMAR) and genomic control approaches to estimate the associations between genotypes and fatty acid composition. In addition, two SNPs in fatty acid synthase (FASN) (T1952A) and stearoyl-CoA desaturase (SCD) (V293A) genes were also genotyped. Association analysis revealed that 30 significant SNPs for several fatty acids (C14:0, C14:1, C16:1 and C18:1) were located in the BTA19 FASN gene located within this region but the FASN mutation had no significant effect on any traits. We also detected one significant SNP for C18:1 on BTA23 and two SNPs for C16:0 on BTA25. The region around 17 Mb on BTA26 harbored two significant SNPs for C14:1 and SNP in SCD in this region showed the strongest association with C14:1. This study demonstrated novel candidate regions in BTA19, 23 and 25 for fatty acid composition.
PLOS ONE | 2013
Takashi Hirano; Naohiko Kobayashi; Tamako Matsuhashi; Daisaku Watanabe; Akiko Takasuga; Mayumi Sugimoto; Yoshikazu Sugimoto
We identified an IARS (isoleucyl-tRNA synthetase) c.235G>C (p.Val79Leu) substitution as the causative mutation for neonatal weakness with intrauterine growth retardation (perinatal weak calf syndrome). In Japanese Black cattle, the syndrome was frequently found in calves sired by Bull A. Hence, we employed homozygosity mapping and linkage analysis. In order to identify the perinatal weak calf syndrome locus in a 4.04-Mb region of BTA 8, we analysed a paternal half-sibling family with a BovineSNP50 BeadChip and microsatellites. In this critical region, we performed exome sequencing to identify a causative mutation. Three variants were detected as possible candidates for causative mutations that were predicted to disrupt the protein function, including a G>C (p.Val79Leu) mutation in IARS c.235. The IARS c.235G>C mutation was not a homozygous risk allele in the 36 healthy offspring of Bull A. Moreover, the IARS Val79 residue and its flanking regions were evolutionarily and highly conserved. The IARS mutant (Leu79) had decreased aminoacylation activity. Additionally, the homozygous mutation was not found in any of 1526 healthy cattle. Therefore, we concluded that the IARS c.235G>C mutation was the cause of hereditary perinatal weak calf syndrome.
Animal Science Journal | 2015
Kiri Hayakawa; Takayuki Sakamoto; Atsushi Ishii; Keita Yamaji; Yoshinobu Uemoto; Nanae Sasago; Eiji Kobayashi; Naohiko Kobayashi; Tamako Matsuhashi; Shin Maruyama; Hirokazu Matsumoto; Kenji Oyama; Hideyuki Mannen; Shinji Sasazaki
The objective of the current study is to evaluate the association between fatty acid composition and fatty acid synthase gene polymorphisms as responsible mutations. For this purpose, we selected seven previously reported single nucleotide polymorphisms (SNPs) in FASN gene, including one within promoter region (g.841G>C) and six non-synonymous SNPs (g.8805C>T, g.13126C>T, g.15532A>C, g.16024A>G, g.16039C>T, g.17924A>G), and genotyped them in Japanese Black cattle. Genotyping results revealed that g.8805 C>T and g.17924 A>G were monomorphic loci. Genome-wide association analysis including the other five SNPs revealed that only g.841G>C showed significant associations with the percentages of C14:0, C14:1, C16:1 and C18:1 at 5% genome-wide significance level. In order to further evaluate the effect, we genotyped g.841G>C using additional three populations, including two Japanese Black populations and a Holstein cattle population. g.16024A>G was also genotyped and included in the analysis because it has been reported to be associated with fatty acid composition in Japanese Black cattle. In the result of analysis of variance, g.841G>C showed stronger effects on fatty acid percentage than those of g.16024A>G in all populations. These results suggested that g.841G>C would be a responsible mutation for fatty acid composition and contribute to production of high-grade beef as a selection marker in beef cattle.
PLOS Genetics | 2015
Akiko Takasuga; Kunio Sato; Ryouichi Nakamura; Yosuke Saito; Shinji Sasaki; Takehito Tsuji; Akio Suzuki; Hiroshi Kobayashi; Tamako Matsuhashi; Koji Setoguchi; Hiroshi Okabe; Toshitake Ootsubo; Ichiro Tabuchi; Tatsuo Fujita; Naoto Watanabe; Takashi Hirano; Shota Nishimura; Makio Hayakawa; Yoshikazu Sugimoto; Takatoshi Kojima
Recessive skeletal dysplasia, characterized by joint- and/or hip bone-enlargement, was mapped within the critical region for a major quantitative trait locus (QTL) influencing carcass weight; previously named CW-3 in Japanese Black cattle. The risk allele was on the same chromosome as the Q allele that increases carcass weight. Phenotypic characterization revealed that the risk allele causes disproportional tall stature and bone size that increases carcass weight in heterozygous individuals but causes disproportionately narrow chest width in homozygotes. A non-synonymous variant of FGD3 was identified as a positional candidate quantitative trait nucleotide (QTN) and the corresponding mutant protein showed reduced activity as a guanine nucleotide exchange factor for Cdc42. FGD3 is expressed in the growth plate cartilage of femurs from bovine and mouse. Thus, loss of FDG3 activity may lead to subsequent loss of Cdc42 function. This would be consistent with the columnar disorganization of proliferating chondrocytes in chondrocyte-specific inactivated Cdc42 mutant mice. This is the first report showing association of FGD3 with skeletal dysplasia.
Animal Science Journal | 2016
Takahiro Nishimaki; Takayuki Ibi; Siqintuya; Naohiko Kobayashi; Tamako Matsuhashi; Takayuki Akiyama; Emi Yoshida; Kazumi Imai; Mayu Matsui; Keiichi Uemura; Hisayoshi Eto; Naoto Watanabe; Tatsuo Fujita; Yosuke Saito; Tomohiko Komatsu; Hiroshi Hoshiba; Hideyuki Mannen; Shinji Sasazaki; Tetsuo Kunieda
Marker-assisted selection (MAS) is expected to accelerate the genetic improvement of Japanese Black cattle. However, verification of the effects of the genes for MAS in different subpopulations is required prior to the application of MAS. In this study, we investigated the allelic frequencies and genotypic effects for carcass traits of six genes, which can be used in MAS, in eight local subpopulations. These genes are SCD, FASN and SREBP1, which are associated with the fatty acid composition of meat, and NCAPG, MC1R and F11, which are associated with carcass weight, coat color and blood coagulation abnormality, respectively. The frequencies of desirable alleles of SCD and FASN were relatively high and that of NCAPG was relatively low, and NCAPG was significantly associated with several carcass traits, including carcass weight. The proportions of genotypic variance explained by NCAPG to phenotypic variance were 4.83 for carcass weight. We thus confirmed that NCAPG is a useful marker for selection of carcass traits in these subpopulations. In addition, we found that the desirable alleles of six genes showed no negative effects on carcass traits. Therefore, selection using these genes to improve target traits should not have negative impacts on carcass traits.
Animal Science Journal | 2013
Takahiro Nishimaki; Takayuki Ibi; Yoshihiro Tanabe; Y. Miyazaki; Naohiko Kobayashi; Tamako Matsuhashi; Takayuki Akiyama; Emi Yoshida; Kazumi Imai; Mayu Matsui; Keiichi Uemura; Naoto Watanabe; Tatsuo Fujita; Yosuke Saito; Tomohiko Komatsu; Takahisa Yamada; Hideyuki Mannen; Shinji Sasazaki; Tetsuo Kunieda
Japanese Black cattle are at risk for genetic homogeneity due to intensive use of a few sires. Therefore, assessment of the actual genetic diversity of this breed is important for future breeding plans. In the present study, we investigated the genetic diversity within and among eight subpopulations of Japanese Black cattle using 52 microsatellite markers. The parameters for genetic diversity of Japanese Black cattle were comparable to those of other cattle breeds, suggesting that the relatively high genetic diversity of the breed. However, upon comparison among the eight subpopulations, the Hyogo subpopulation showed markedly low genetic diversity. The results of the pairwise FST values, phylogenetic network and structure analysis indicated that the Hyogo population has remarkably high level of genetic differentiation from other populations, while Yamagata, Niigata, Hiroshima and Kagawa populations have low levels of genetic differentiation. Furthermore, multidimensional scaling plots indicated that individuals in some subpopulations were separated from individuals in the other subpopulations. We conclude that while the overall genetic diversity of Japanese Black cattle is still maintained at a relatively high level, that of a particular subpopulation is significantly reduced, and therefore the effective population size of the breed needs to be controlled by correct mating strategies.
Animal Science Journal | 2016
Takashi Hirano; Tamako Matsuhashi; Kenji Takeda; Hiromi Hara; Naohiko Kobayashi; Kazuo Kita; Yoshikazu Sugimoto; Kei Hanzawa
Isoleucyl-tRNA synthetase (IARS) c.235G > C (p.V79L) is a causative mutation for a recessive disease called IARS disorder in Japanese black cattle. The disease is involved in weak calf syndrome and is characterized by low birth weight, weakness and poor suckling. The gestation period is often slightly extended, implying that intrauterine growth is retarded. In a previous analysis of 2597 artificial insemination (AI) procedures, we suggested that the IARS mutation might contribute toward an increase in the incidence of prenatal death. In this study, we extended this analysis to better clarify the association between the IARS mutation and prenatal death. The IARS genotypes of 92 animals resulting from crosses between carrier (G/C) × G/C were 27 normal (G/G), 55 G/C and 10 affected animals (C/C) (expected numbers: 23, 46 and 23, respectively). Compared to the expected numbers, there were significantly fewer affected animals in this population (P < 0.05), suggesting that more than half of the affected embryos died prenatally. When the number of AI procedures examined was increased to 11 580, the frequency of re-insemination after G/C × G/C insemination was significantly higher at 61-140 days (P < 0.001). The findings suggested that the homozygous IARS mutation not only causes calf death, but also embryonic or fetal death.
BMC Genetics | 2015
Shinji Sasaki; Takayuki Ibi; Tamako Matsuhashi; Kenji Takeda; Shogo Ikeda; Mayumi Sugimoto; Yoshikazu Sugimoto
BackgroundFemale fertility, a fundamental trait required for animal reproduction, has gradually declined in the last 2 decades in Japanese Black cattle. To identify associated genetic variants in Japanese Black cattle, we evaluated female fertility as a metric to describe the average inverse of the number of artificial inseminations required for conception from the first through the fourth parity (ANAI4) and conducted a genome-wide association study (GWAS) using 430 animals with extreme ANAI4 values from 10,399 animals.ResultsWe found that 2 variants, namely a single-nucleotide polymorphisms (SNP; g.48476925C > T) and a 3-bp indel (g.48476943_48476946insGGC), in the upstream region of the activin receptor IIA gene (ACVR2A) were associated with ANAI4. ACVR2A transcripts from Japanese Black cattle of the Q haplotype, defined by the SNP and the 3-bp indel, with increased ANAI4 were 1.29–1.32-fold more abundant than q-derived transcripts. In agreement, reporter assay results revealed that the activity of the ACVR2A promoter was higher in reporter constructs with the Q haplotype than in those with the q haplotype by approximately 1.2 fold. Expression of exogenous ACVR2A induced dose-dependent increases of reporter activity from the follicle-stimulating hormone, beta polypeptide (FSHB) promoter in response to activin A in a pituitary gonadotrophic cell line. The findings suggested that sequence variations in the upstream region of ACVR2A with the Q haplotype increased ACVR2A transcription, which in turn induced FSHB expression. This association was replicated using a sample population size of 1,433 animals; the frequency of the Q haplotype was 0.39, and Q-to-q haplotype substitution resulted in an increase of 0.02 in terms of ANAI4.ConclusionsThis GWAS identified variants in the upstream region of ACVR2A, which were associated with female fertility in Japanese Black cattle. The variants affected the level of ACVR2A mRNA expression, which could lead to an allelic imbalance. This association was replicated with a sample population of 1,433 animals. Thus, the results suggest that the Q haplotype could serve as a useful marker to select Japanese Black cattle with superior female fertility.
BMC Genetics | 2013
Shinji Sasaki; Takayuki Ibi; Tamako Matsuhashi; Shogo Ikeda; Yoshikazu Sugimoto
Nihon Chikusan Gakkaiho | 2008
Kouhei Nagai; Takuya Yoshihiro; Etsuko Inoue; Haruka Ikegami; Youhei Sono; Hideya Kawaji; Naohiko Kobayashi; Tamako Matsuhashi; Tsuyoshi Ohtani; Koichi Morimoto; Masaru Nakagawa; Akira Iritani; Kazuya Matsumoto