Tamara L. Marquardt
Cleveland Clinic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tamara L. Marquardt.
Journal of Orthopaedic Research | 2013
Dong Hee Kim; Tamara L. Marquardt; Joseph N. Gabra; Zhilei Liu Shen; Peter J. Evans; William H. Seitz; Zong Ming Li
We investigated morphological changes of a released carpal tunnel in response to variations of carpal tunnel pressure. Pressure within the carpal tunnel is known to be elevated in patients with carpal tunnel syndrome and dependent on wrist posture. Previously, increased carpal tunnel pressure was shown to affect the morphology of the carpal tunnel with an intact transverse carpal ligament (TCL). However, the pressure–morphology relationship of the carpal tunnel after release of the TCL has not been investigated. Carpal tunnel release (CTR) was performed endoscopically on cadaveric hands and the carpal tunnel pressure was dynamically increased from 10 to 120 mmHg. Simultaneously, carpal tunnel cross‐sectional images were captured by an ultrasound system, and pressure measurements were recorded by a pressure transducer. Carpal tunnel pressure significantly affected carpal arch area (p < 0.001), with an increase of >62 mm2 at 120 mmHg. Carpal arch height, length, and width also significantly changed with carpal tunnel pressure (p < 0.05). As carpal tunnel pressure increased, carpal arch height and length increased, but the carpal arch width decreased. Analyses of the pressure–morphology relationship for a released carpal tunnel revealed a nine times greater compliance than that previously reported for a carpal tunnel with an intact TCL. This change of structural properties as a result of transecting the TCL helps explain the reduction of carpal tunnel pressure and relief of symptoms for patients after CTR surgery.
PLOS ONE | 2013
Ke Li; Raviraj Nataraj; Tamara L. Marquardt; Zong Ming Li
The human opposable thumb enables the hand to perform dexterous manipulation of objects, which requires well-coordinated digit force vectors. This study investigated the directional coordination of force vectors generated by the thumb and index finger during precision pinch. Fourteen right-handed, healthy subjects were instructed to exert pinch force on an externally stabilized apparatus with the pulps of the thumb and index finger. Subjects applied forces to follow a force-ramp profile that linearly increased from 0 to 12 N and then decreased to 0 N, at a rate of ±3 N/s. Directional relationships between the thumb and index finger force vectors were quantified using the coordination angle (CA) between the force vectors. Individual force vectors were further analyzed according to their projection angles (PAs) with respect to the pinch surface planes and the shear angles (SAs) within those planes. Results demonstrated that fingertip force directions were dependent on pinch force magnitude, especially at forces below 2 N. Hysteresis was observed in the force-CA relationship for increasing and decreasing forces and fitted with exponential models. The fitted asymptotic values were 156.0±6.6° and 150.8±9.3° for increasing and decreasing force ramps, respectively. The PA of the thumb force vector deviated further from the direction perpendicular to the pinching surface planes than that of the index finger. The SA showed that the index finger force vector deviated in the ulnar-proximal direction, whereas the thumb switched its force between the ulnar-proximal and radial-proximal directions. The findings shed light on the effects of anatomical composition, biomechanical function, and neuromuscular control in coordinating digit forces during precision pinch, and provided insight into the magnitude-dependent force directional control which potentially affects a range of dexterous manipulations.
Neuroscience Letters | 2013
Ke Li; Tamara L. Marquardt; Zong Ming Li
This study examined the effects of visual feedback on inter-digit force coordination during a precision pinch. Sixteen healthy, right-handed subjects were instructed to pinch an instrumented apparatus for 1 min with a stable force output. Visual feedback was provided for the first 30s and withdrawn for the second 30s. Detrended fluctuation analysis (DFA) and detrended cross-correlation analysis (DCCA) methods were used to quantify the time-dependent structures of each digits force and of the force correlation between the digits. After removing visual feedback, the DFA scaling exponent, αDFA, increased from 1.10±0.12 to 1.29±0.13 for the thumb and from 0.95±0.08 to 1.33±0.13 for the index finger (F1,95=372.47, p<0.001); the DCCA scaling exponent, αDCCA, increased from 1.00±0.08 to 1.33±0.13 (t95=20.33, p<0.001). Structural changes were observed beginning with the first 5s epoch after the removal of visual feedback. The results provide evidence that removing visual feedback lowers the structural variability of inter-digit force coordination. This change is reflected in the high-level control strategy, resulting in the two digits being more tightly coupled under somatosensory feedback without visual inputs.
Clinical Biomechanics | 2013
Zong Ming Li; Joseph N. Gabra; Tamara L. Marquardt; Dong Hee Kim
BACKGROUND Carpal tunnel morphology plays an essential role in the etiology and treatment of carpal tunnel syndrome. The purpose of this study was to observe the morphological changes of the carpal tunnel as a result of carpal arch width narrowing. It was hypothesized that carpal arch width narrowing would result in increased height and area of the carpal arch. METHODS The carpal arch width of eight cadaveric hands was narrowed by a custom apparatus and cross-sectional ultrasound images were acquired. The carpal arch height and area were quantified as the carpal arch width was narrowed. Correlation and regression analyses were performed for the carpal arch height and area with respect to the carpal arch width. FINDINGS The carpal tunnel became more convex as the carpal arch width was narrowed. The initial carpal arch width, height, and area were 25.7 (SD1.9) mm, 4.1 (SD0.6) mm, and 68.5 (SD14.0) mm(2), respectively. The carpal arch height and area negatively correlated with the carpal arch width, with correlation coefficients of -0.974 (SD0.018) and -0.925 (SD0.034), respectively. Linear regression analyses showed a 1mm narrowing of the carpal arch width resulted in proportional increases of 0.40 (SD0.14) mm in the carpal arch height and 4.0 (SD2.2) mm(2) in the carpal arch area. INTERPRETATION This study demonstrates that carpal arch width narrowing leads to increased carpal arch height and area, a potential mechanism to reduce the mechanical insult to the median nerve and relieve symptoms associated with carpal tunnel syndrome.
Clinical Biomechanics | 2015
Tamara L. Marquardt; Joseph N. Gabra; Zong Ming Li
BACKGROUND The carpal tunnel is a fibro-osseous structure containing the median nerve and flexor tendons. Its cross-sectional area has been shown to increase during compressive force application to the carpal bones in modeling and in vitro studies. The purpose of this study was to investigate the morphological and positional changes of the carpal arch and median nerve while in vivo compressive force was applied in the radioulnar direction across the wrist. METHODS Ultrasound images of the carpal tunnel and its contents were captured for 11 healthy, female volunteers at the distal tunnel level prior to force application and during force application of 10 and 20N. FINDINGS With applied force, the carpal arch width significantly decreased, while the carpal arch height and area significantly increased (P<0.001). The median nerve shape became more rounded as the compressive force magnitude increased, reflected by decreases in the nerves flattening ratio and increases in its circularity (P<0.001). The applied force also resulted in nerve displacement in the radial-volar direction. INTERPRETATION This study demonstrates that noninvasively applying radioulnar compressive force across the wrist may potentially provide relief of median nerve compression to patients suffering from carpal tunnel syndrome.
Journal of Mechanics in Medicine and Biology | 2013
Tamara L. Marquardt; Zong Ming Li
A methodology was established to investigate the contact mechanics of the thumb and the index finger at the digit-object interface during precision pinch. Two force/torque transducers were incorporated into an apparatus designed to overcome the thickness of each transducer and provide a flexible pinch span for digit placement and force application. To demonstrate the utility of the device, five subjects completed a pinch task with the pulps of their thumb and index finger. Inter-digit force vector coordination was quantified by examining the 1) force vector component magnitudes, 2) resultant force vector magnitudes, 3) coordination angle - the angle formed by the resultant vectors of each digit, 4) direction angles - the angle formed by each vector and the coordinate axes, and 5) center of pressure locations. It was shown that the resultant force magnitude of the index finger exceeded that of the thumb by 0.8 ± 0.3 N and that the coordination angle between the digit resultant force vectors was 160.2 ± 4.6°. The experimental apparatus and analysis methods provide a valuable tool for the quantitative examination of biomechanics and motor control during dexterous manipulation.
Journal of wrist surgery | 2014
Zong-Ming Li; Tamara L. Marquardt; Peter J. Evans; William H. Seitz
The transverse carpal ligament (TCL) is a significant constituent of the wrist structure and forms the volar boundary of the carpal tunnel. It serves biomechanical and physiological functions, acting as a pulley for the flexor tendons, anchoring the thenar and hypothenar muscles, stabilizing the bony structure, and providing wrist proprioception. This article mainly describes and reviews our recent studies regarding the biomechanical role of the TCL in the compliant characteristics of the carpal tunnel. First, force applied to the TCL from within the carpal tunnel increased arch height and area due to arch width narrowing from the migration of the bony insertion sites of the TCL. The experimental findings were accounted for by a geometric model that elucidated the relationships among arch width, height, and area. Second, carpal arch deformation showed that the carpal tunnel was more flexible at the proximal level than at the distal level and was more compliant in the inward direction than in the outward direction. The hamate-capitate joint had larger angular rotations than the capitate-trapezoid and trapezoid-trapezium joints for their contributions to changes of the carpal arch width. Lastly, pressure application inside the intact and released carpal tunnels led to increased carpal tunnel cross-sectional areas, which were mainly attributable to the expansion of the carpal arch formed by the TCL. Transection of the TCL led to an increase of carpal arch compliance that was nine times greater than that of the intact carpal tunnel. The carpal tunnel, while regarded as a stabile structure, demonstrates compliant properties that help to accommodate biomechanical and physiological variants such as changes in carpal tunnel pressure.
Journal of Orthopaedic Research | 2016
Tamara L. Marquardt; Peter J. Evans; William H. Seitz; Zong Ming Li
The purpose of this study was to investigate the morphological changes of the carpal arch and median nerve during the application of radiounlarly directed compressive force across the wrist in patients with carpal tunnel syndrome. Radioulnar compressive forces of 10 N and 20 N were applied at the distal level of the carpal tunnel in 10 female patients diagnosed with carpal tunnel syndrome. Immediately prior to force application and after 3 min of application, ultrasound images of the distal carpal tunnel were obtained. It was found that applying force across the wrist decreased the carpal arch width (p < 0.001) and resulted in increased carpal arch height (p < 0.01), increased carpal arch curvature (p < 0.001), and increased radial distribution of the carpal arch area (p < 0.05). It was also shown that wrist compression reduced the flattening of the median nerve, as indicated by changes in the nerves circularity and flattening ratio (p < 0.001). This study demonstrated that the carpal arch can be non‐invasively augmented by applying compressive force across the wrist, and that this strategy may decompress the median nerve providing symptom relief to patients with carpal tunnel syndrome.
PLOS ONE | 2016
Christiane Mhanna; Tamara L. Marquardt; Zong Ming Li
The transverse carpal ligament (TCL) plays a critical role in carpal tunnel biomechanics through interactions with its surrounding tissues. The purpose of this study was to investigate the in vivo adaptations of the TCL’s mechanical properties in response to repetitive hand use in pianists using acoustic radiation force impulse (ARFI) imaging. It was hypothesized that pianists, in comparison to non-pianists, would have a stiffer TCL as indicated by an increased acoustic shear wave velocity (SWV). ARFI imagining was performed for 10 female pianists and 10 female non-pianists. The median SWV values of the TCL were determined for the entire TCL, as well as for its radial and ulnar portions, rTCL and uTCL, respectively. The TCL SWV was significantly increased in pianists relative to non-pianists (p < 0.05). Additionally, the increased SWV was location dependent for both pianist and non-pianist groups (p < 0.05), with the rTCL having a significantly greater SWV than the uTCL. Between groups, the rTCL SWV of pianists was 22.2% greater than that of the non-pianists (p < 0.001). This localized increase of TCL SWV, i.e. stiffening, may be primarily attributable to focal biomechanical interactions that occur at the radial TCL aspect where the thenar muscles are anchored. Progressive stiffening of the TCL may become constraining to the carpal tunnel, leading to median nerve compression in the tunnel. TCL maladaptation helps explain why populations who repeatedly use their hands are at an increased risk of developing musculoskeletal pathologies, e.g. carpal tunnel syndrome.
Journal of Musculoskeletal Research | 2016
Tamara L. Marquardt; Joseph N. Gabra; Peter J. Evans; William H. Seitz; Zong Ming Li
The purpose of this study was to investigate the morphological and mechanical properties of the transverse carpal ligament (TCL) in patients with carpal tunnel syndrome (CTS). Thickness and stiffness of the TCL in eight female CTS patients and eight female control subjects were examined using ultrasound imaging modalities. CTS patients had a 30.9% thicker TCL than control subjects. There was no overall difference in TCL stiffness between the two groups, but the radial TCL region was significantly stiffer than the ulnar region within the CTS group and such a regional difference was not found for the controls. The increased thickness and localized stiffness of the TCL for CTS patients may contribute to CTS symptoms due to reduction in carpal tunnel space and compliance. Advancements in ultrasound technology provide a means of understanding CTS mechanisms and quantifying the morphological and mechanical properties of the TCL in vivo.