Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tamás Baranyai is active.

Publication


Featured researches published by Tamás Baranyai.


Journal of Molecular and Cellular Cardiology | 2014

Cardioprotection by remote ischemic preconditioning of the rat heart is mediated by extracellular vesicles

Zoltán Giricz; Zoltán V. Varga; Tamás Baranyai; Péter Sipos; Krisztina Pálóczi; Ágnes Kittel; Edit I. Buzás; Péter Ferdinandy

Remote ischemic preconditioning (RIPC) of the heart is exerted by brief ischemic insults affected on a remote organ or a remote area of the heart before a sustained cardiac ischemia. To date, little is known about the inter-organ transfer mechanisms of cardioprotection by RIPC. Exosomes and microvesicles/microparticles are vesicles of 30-100 nm and 100-1000 nm in diameter, respectively (collectively termed extracellular vesicles [EVs]). Their content of proteins, mRNAs and microRNAs, renders EV ideal conveyors of inter-organ communication. However, whether EVs are involved in RIPC, is unknown. Therefore, here we investigated whether (1) IPC induces release of EVs from the heart, and (2) EVs are necessary for cardioprotection by RIPC. Hearts of male Wistar rats were isolated and perfused in Langendorff mode. A group of donor hearts was exposed to 3 × 5-5 min global ischemia and reperfusion (IPC) or 30 min aerobic perfusion, while coronary perfusates were collected. Coronary perfusates of these hearts were given to another set of recipient isolated hearts. A group of recipient hearts received IPC effluent depleted of EVs by differential ultracentrifugation. Infarct size was determined after 30 min global ischemia and 120 min reperfusion. The presence or absence of EVs in perfusates was confirmed by dynamic light scattering, the EV marker HSP60 Western blot, and electron microscopy. IPC markedly increased EV release from the heart as assessed by HSP60. Administration of coronary perfusate from IPC donor hearts attenuated infarct size in non-preconditioned recipient hearts (12.9 ± 1.6% vs. 25.0 ± 2.7%), similarly to cardioprotection afforded by IPC (7.3 ± 2.7% vs. 22.1 ± 2.9%) on the donor hearts. Perfusates of IPC hearts depleted of EVs failed to exert cardioprotection in recipient hearts (22.0 ± 2.3%). This is the first demonstration that EVs released from the heart after IPC are necessary for cardioprotection by RIPC, evidencing the importance of vesicular transfer mechanisms in remote cardioprotection.


PLOS ONE | 2015

Isolation of Exosomes from Blood Plasma: Qualitative and Quantitative Comparison of Ultracentrifugation and Size Exclusion Chromatography Methods.

Tamás Baranyai; Kata Herczeg; Zsófia Onódi; István Voszka; Károly Módos; Nikolett Marton; György Nagy; Imre Mäger; Matthew J.A. Wood; Samir El Andaloussi; Zoltán Pálinkás; Vikas Kumar; Peter D. Nagy; Ágnes Kittel; Edit I. Buzás; Péter Ferdinandy; Zoltán Giricz

Background Exosomes are emerging targets for biomedical research. However, suitable methods for the isolation of blood plasma-derived exosomes without impurities have not yet been described. Aim Therefore, we investigated the efficiency and purity of exosomes isolated with potentially suitable methods; differential ultracentrifugation (UC) and size exclusion chromatography (SEC). Methods and Results Exosomes were isolated from rat and human blood plasma by various UC and SEC conditions. Efficiency was investigated at serial UC of the supernatant, while in case of SEC by comparing the content of exosomal markers of various fractions. Purity was assessed based on the presence of albumin. We found that the diameter of the majority of isolated particles fell into the size range of exosomes, however, albumin was also present in the preparations, when 1h UC at 4°C was applied. Furthermore, with this method only a minor fraction of total exosomes could be isolated from blood as deduced from the constant amount of exosomal markers CD63 and TSG101 detected after serial UC of rat blood plasma samples. By using UC for longer time or with shorter sedimentation distance at 4°C, or UC performed at 37°C, exosomal yield increased, but albumin impurity was still observed in the isolates, as assessed by transmission electron microscopy, dynamic light scattering and immunoblotting against CD63, TSG101 and albumin. Efficiency and purity were not different in case of using further diluted samples. By using SEC with different columns, we have found that although a minor fraction of exosomes can be isolated without significant albumin content on Sepharose CL-4B or Sephacryl S-400 columns, but not on Sepharose 2B columns, the majority of exosomes co-eluted with albumin. Conclusion Here we show that it is feasible to isolate exosomes from blood plasma by SEC without significant albumin contamination albeit with low vesicle yield.


Scientific Reports | 2016

Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection

Barbara Sódar; Ágnes Kittel; Krisztina Pálóczi; Krisztina V. Vukman; Xabier Osteikoetxea; Katalin Szabó-Taylor; Andrea Németh; Beáta Sperlágh; Tamás Baranyai; Zoltán Giricz; Zoltán Wiener; Lilla Turiák; László Drahos; Éva Pállinger; Károly Vékey; Péter Ferdinandy; András Falus; Edit I. Buzás

Circulating extracellular vesicles have emerged as potential new biomarkers in a wide variety of diseases. Despite the increasing interest, their isolation and purification from body fluids remains challenging. Here we studied human pre-prandial and 4 hours postprandial platelet-free blood plasma samples as well as human platelet concentrates. Using flow cytometry, we found that the majority of circulating particles within the size range of extracellular vesicles lacked common vesicular markers. We identified most of these particles as lipoproteins (predominantly low-density lipoprotein, LDL) which mimicked the characteristics of extracellular vesicles and also co-purified with them. Based on biophysical properties of LDL this finding was highly unexpected. Current state-of-the-art extracellular vesicle isolation and purification methods did not result in lipoprotein-free vesicle preparations from blood plasma or from platelet concentrates. Furthermore, transmission electron microscopy showed an association of LDL with isolated vesicles upon in vitro mixing. This is the first study to show co-purification and in vitro association of LDL with extracellular vesicles and its interference with vesicle analysis. Our data point to the importance of careful study design and data interpretation in studies using blood-derived extracellular vesicles with special focus on potentially co-purified LDL.


Journal of Translational Medicine | 2015

Myostatin and IGF-I signaling in end-stage human heart failure: a qRT-PCR study

Júlia Aliz Baán; Zoltán V. Varga; Przemysław Leszek; Mariusz Kuśmierczyk; Tamás Baranyai; László Dux; Péter Ferdinandy; Thomas Braun; Luca Mendler

BackgroundMyostatin (Mstn) is a key regulator of heart metabolism and cardiomyocyte growth interacting tightly with insulin-like growth factor I (IGF-I) under physiological conditions. The pathological role of Mstn has also been suggested since Mstn protein was shown to be upregulated in the myocardium of end-stage heart failure. However, no data are available about the regulation of gene expression of Mstn and IGF-I in different regions of healthy or pathologic human hearts, although they both might play a crucial role in the pathomechanism of heart failure.MethodsIn the present study, heart samples were collected from left ventricles, septum and right ventricles of control healthy individuals as well as from failing hearts of dilated (DCM) or ischemic cardiomyopathic (ICM) patients. A comprehensive qRT-PCR analysis of Mstn and IGF-I signaling was carried out by measuring expression of Mstn, its receptor Activin receptor IIB (ActRIIB), IGF-I, IGF-I receptor (IGF-IR), and the negative regulator of Mstn miR-208, respectively. Moreover, we combined the measured transcript levels and created complex parameters characterizing either Mstn- or IGF-I signaling in the different regions of healthy or failing hearts.ResultsWe have found that in healthy control hearts, the ratio of Mstn/IGF-I signaling was significantly higher in the left ventricle/septum than in the right ventricle. Moreover, Mstn transcript levels were significantly upregulated in all heart regions of DCM but not ICM patients. However, the ratio of Mstn/IGF-I signaling remained increased in the left ventricle/septum compared to the right ventricle of DCM patients (similarly to the healthy hearts). In contrast, in ICM hearts significant transcript changes were detected mainly in IGF-I signaling. In paralell with these results miR-208 showed mild upregulation in the left ventricle of both DCM and ICM hearts.ConclusionsThis is the first demonstration of a spatial asymmetry in the expression pattern of Mstn/IGF-I in healthy hearts, which is likely to play a role in the different growth regulation of left vs. right ventricle. Moreover, we identified Mstn as a massively regulated gene in DCM but not in ICM as part of possible compensatory mechanisms in the failing heart.


American Journal of Physiology-heart and Circulatory Physiology | 2016

Diastolic dysfunction in prediabetic male rats: Role of mitochondrial oxidative stress

Gábor Koncsos; Zoltán V. Varga; Tamás Baranyai; Kerstin Boengler; Susanne Rohrbach; L. Li; Klaus-Dieter Schlüter; Rolf Schreckenberg; Tamás Radovits; Attila Oláh; Csaba Mátyás; Árpád Lux; Mahmoud Al-Khrasani; Tímea Komlódi; Nóra Bukosza; Domokos Máthé; Laszlo Deres; Monika Bartekova; Tomas Rajtik; Adriana Adameova; Krisztián Szigeti; Péter Hamar; Zsuzsanna Helyes; Laszlo Tretter; Pál Pacher; Béla Merkely; Zoltán Giricz; Rainer Schulz; Péter Ferdinandy

Although incidence and prevalence of prediabetes are increasing, little is known about its cardiac effects. Therefore, our aim was to investigate the effect of prediabetes on cardiac function and to characterize parameters and pathways associated with deteriorated cardiac performance. Long-Evans rats were fed with either control or high-fat chow for 21 wk and treated with a single low dose (20 mg/kg) of streptozotocin at week 4 High-fat and streptozotocin treatment induced prediabetes as characterized by slightly elevated fasting blood glucose, impaired glucose and insulin tolerance, increased visceral adipose tissue and plasma leptin levels, as well as sensory neuropathy. In prediabetic animals, a mild diastolic dysfunction was observed, the number of myocardial lipid droplets increased, and left ventricular mass and wall thickness were elevated; however, no molecular sign of fibrosis or cardiac hypertrophy was shown. In prediabetes, production of reactive oxygen species was elevated in subsarcolemmal mitochondria. Expression of mitofusin-2 was increased, while the phosphorylation of phospholamban and expression of Bcl-2/adenovirus E1B 19-kDa protein-interacting protein 3 (BNIP3, a marker of mitophagy) decreased. However, expression of other markers of cardiac auto- and mitophagy, mitochondrial dynamics, inflammation, heat shock proteins, Ca2+/calmodulin-dependent protein kinase II, mammalian target of rapamycin, or apoptotic pathways were unchanged in prediabetes. This is the first comprehensive analysis of cardiac effects of prediabetes indicating that mild diastolic dysfunction and cardiac hypertrophy are multifactorial phenomena that are associated with early changes in mitophagy, cardiac lipid accumulation, and elevated oxidative stress and that prediabetes-induced oxidative stress originates from the subsarcolemmal mitochondria.


Scientific Reports | 2017

Sequential activation of different pathway networks in ischemia-affected and non-affected myocardium, inducing intrinsic remote conditioning to prevent left ventricular remodeling

Noemi Pavo; Dominika Lukovic; Katrin Zlabinger; Abelina Zimba; David Lorant; Georg Goliasch; Johannes Winkler; Dietmar Pils; Katharina Auer; Hendrik Jan Ankersmit; Zoltán Giricz; Tamás Baranyai; Márta Sárközy; András Jakab; Rita Garamvölgyi; Maximilian Y. Emmert; Simon P. Hoerstrup; Derek J. Hausenloy; Péter Ferdinandy; Gerald Maurer; Mariann Gyöngyösi

We have analyzed the pathway networks of ischemia-affected and remote myocardial areas after repetitive ischemia/reperfusion (r-I/R) injury without ensuing myocardial infarction (MI) to elaborate a spatial- and chronologic model of cardioprotective gene networks to prevent left ventricular (LV) adverse remodeling. Domestic pigs underwent three cycles of 10/10 min r-I/R by percutaneous intracoronary balloon inflation/deflation in the mid left anterior descending artery, without consecutive MI. Sham interventions (n = 8) served as controls. Hearts were explanted at 5 h (n = 6) and 24 h (n = 6), and transcriptomic profiling of the distal (ischemia-affected) and proximal (non-affected) anterior myocardial regions were analyzed by next generation sequencing (NGS) and post-processing with signaling pathway impact and pathway network analyses. In ischemic region, r-I/R induced early activation of Ca-, adipocytokine and insulin signaling pathways with key regulator STAT3, which was also upregulated in the remote areas together with clusterin (CLU) and TNF-alpha. During the late phase of cardioprotection, antigen immunomodulatory pathways were activated with upregulation of STAT1 and CASP3 and downregulation of neprilysin in both zones, suggesting r-I/R induced intrinsic remote conditioning. The temporo-spatially differently activated pathways revealed a global myocardial response, and neprilysin and the STAT family as key regulators of intrinsic remote conditioning for prevention of adverse remodeling.


Orvosi Hetilap | 2010

Acute pancreatitis caused by hypertriglyceridemia

Tamás Baranyai; Terzin; Ágota Vajda; Tibor Wittmann; László Czakó

UNLABELLED Hypertriglyceridemia is reported to cause 1-7% of the cases of acute pancreatitis. AIM The aim of the present study was to assess the clinical features and management of pancreatitis with hypertriglyceridemia in our tertiary center. METHODS Between 1 January 2007 and 31 December 2009, patients with a diagnosis of hypertriglyceridemia-induced acute pancreatitis were reviewed. Patients with pancreatitis and serum triglyceride levels greater than 11.3 mmol/l (≈1000 mg/dl) were included. Acute pancreatitis with other etiologies was excluded. RESULTS 26 patients (2 women, 24 men; median age at presentation 42 years; range: 22-70) were diagnosed with hypertriglyceridemia‑induced acute pancreatitis; 3 patients had altogether 7 relapses. The total number of cases was 33, which accounted for 4.71% of the total number of acute pancreatitis cases in the examined period. There was a failure in diet in 30.3% and a history of regular alcohol abuse in 57.6% of the cases. A history of diabetes mellitus was present in 38.1%, and gallstones in 9.1% of the cases. Lactescent serum was described on admission in 27.3%. Mean triglyceride level was 47.24 mmol/l (≈4181 mg/dl; 12.4-103.8 mmol/l). Amylase level was elevated to three times the normal in 54.5%, and that of lipase to three times the normal in 58.8%. Necrotizing acute pancreatitis was diagnosed in 7 patients (26.9%), and pseudocyst in 8 patients (30.7%). Administration of insulin, heparin, plasmapheresis and fibrates lowered the triglyceride to 3.71 mmol/l (≈328 mg/dl). CONCLUSION The clinical course of acute pancreatitis with hypertriglyceridemia does not differ from acute pancreatitis of other causes. Interestingly, levels of serum pancreatic enzymes may be normal or only minimally elevated. Insulin, heparin, plasmapheresis and fibrates effectively reduce lipid levels and relieve symptoms. A low triglyceride level is necessary to prevent relapses.


Journal of Pharmacological and Toxicological Methods | 2018

Nagarse treatment of cardiac subsarcolemmal and interfibrillar mitochondria leads to artefacts in mitochondrial protein quantification

Gábor Koncsos; Zoltán V. Varga; Tamás Baranyai; Péter Ferdinandy; Rainer Schulz; Zoltán Giricz; Kerstin Boengler

INTRODUCTION In the heart, subsarcolemmal (SSM), interfibrillar (IFM) and perinuclear mitochondria represent three subtypes of mitochondria. The most commonly used protease during IFM isolation is the nagarse, however, its effect on the detection of mitochondrial proteins is still unclear. Therefore, we investigated whether nagarse treatment influences the quantification of mitochondrial proteins. METHODS SSM and IFM were isolated from hearts of mice and rats. During IFM isolation, nagarse activity was either stopped by centrifugation (common protocol, IFM+N) or inhibited by phenylmethylsulfonyl fluoride (PMSF, IFM+N+I). The amounts of proteins located in different mitochondrial compartments (outer membrane: mitofusin 1 (MFN1) and 2 (MFN2); intermembrane space: p66shc; inner membrane (connexin 43 (Cx43)), and of protein deglycase DJ-1 were determined by Western blot. RESULTS MFN2 and Cx43 were found predominantly in SSM isolated from mouse and rat hearts. MFN1 and p66shc were present in similar amounts in SSM and IFM+N, whereas the level of DJ-1 was higher in IFM+N compared to SSM. In IFM+N+I samples from mice, the amount of MFN2, but not that of Cx43 increased. Nagarse or nagarse inhibition by PMSF had no effect on oxygen consumption of SSM or IFM. DISCUSSION Whereas the use of the common protocol indicates the localization of MFN2 predominantly in SSM, the inhibition of nagarse by PMSF increases the signal of MFN2 in IFM to that of in SSM, indicating an underestimation of MFN2 in IFM. Therefore, protease sensitivity should be considered when assessing distribution of mitochondrial proteins using nagarse-based isolation.


Frontiers in Physiology | 2017

Alternative Splicing of NOX4 in the Failing Human Heart

Zoltán V. Varga; Márton Pipicz; Júlia Aliz Baán; Tamás Baranyai; Gábor Koncsos; Przemysław Leszek; Mariusz Kuśmierczyk; Fátima Sánchez-Cabo; Pablo García-Pavía; Gábor J. Brenner; Zoltán Giricz; Tamás Csont; Luca Mendler; Enrique Lara-Pezzi; Pál Pacher; Péter Ferdinandy

Increased oxidative stress is a major contributor to the development and progression of heart failure, however, our knowledge on the role of the distinct NADPH oxidase (NOX) isoenzymes, especially on NOX4 is controversial. Therefore, we aimed to characterize NOX4 expression in human samples from healthy and failing hearts. Explanted human heart samples (left and right ventricular, and septal regions) were obtained from patients suffering from heart failure of ischemic or dilated origin. Control samples were obtained from donor hearts that were not used for transplantation. Deep RNA sequencing of the cardiac transcriptome indicated extensive alternative splicing of the NOX4 gene in heart failure as compared to samples from healthy donor hearts. Long distance PCR analysis with a universal 5′-3′ end primer pair, allowing amplification of different splice variants, confirmed the presence of the splice variants. To assess translation of the alternatively spliced transcripts we determined protein expression of NOX4 by using a specific antibody recognizing a conserved region in all variants. Western blot analysis showed up-regulation of the full-length NOX4 in ischemic cardiomyopathy samples and confirmed presence of shorter isoforms both in control and failing samples with disease-associated expression pattern. We describe here for the first time that NOX4 undergoes extensive alternative splicing in human hearts which gives rise to the expression of different enzyme isoforms. The full length NOX4 is significantly upregulated in ischemic cardiomyopathy suggesting a role for NOX4 in ROS production during heart failure.


Scientific Reports | 2018

MicroRNA interactome analysis predicts post-transcriptional regulation of ADRB2 and PPP3R1 in the hypercholesterolemic myocardium

Bence Ágg; Tamás Baranyai; András Makkos; Borbála Vető; Nóra Faragó; Ágnes Zvara; Zoltán Giricz; Daniel V. Veres; Péter Csermely; Tamás Arányi; László G. Puskás; Zoltán V. Varga; Péter Ferdinandy

Little is known about the molecular mechanism including microRNAs (miRNA) in hypercholesterolemia-induced cardiac dysfunction. We aimed to explore novel hypercholesterolemia-induced pathway alterations in the heart by an unbiased approach based on miRNA omics, target prediction and validation. With miRNA microarray we identified forty-seven upregulated and ten downregulated miRNAs in hypercholesterolemic rat hearts compared to the normocholesterolemic group. Eleven mRNAs with at least 4 interacting upregulated miRNAs were selected by a network theoretical approach, out of which 3 mRNAs (beta-2 adrenergic receptor [Adrb2], calcineurin B type 1 [Ppp3r1] and calcium/calmodulin-dependent serine protein kinase [Cask]) were validated with qRT-PCR and Western blot. In hypercholesterolemic hearts, the expression of Adrb2 mRNA was significantly decreased. ADRB2 and PPP3R1 protein were significantly downregulated in hypercholesterolemic hearts. The direct interaction of Adrb2 with upregulated miRNAs was demonstrated by luciferase reporter assay. Gene ontology analysis revealed that the majority of the predicted mRNA changes may contribute to the hypercholesterolemia-induced cardiac dysfunction. In summary, the present unbiased target prediction approach based on global cardiac miRNA expression profiling revealed for the first time in the literature that both the mRNA and protein product of Adrb2 and PPP3R1 protein are decreased in the hypercholesterolemic heart.

Collaboration


Dive into the Tamás Baranyai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge