Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tamas Virag is active.

Publication


Featured researches published by Tamas Virag.


Molecular Therapy | 2012

Long-term Restoration of Cardiac Dystrophin Expression in Golden Retriever Muscular Dystrophy Following rAAV6-mediated Exon Skipping

Lawrence T. Bish; Meg M. Sleeper; Sean C. Forbes; Bingjing Wang; Caryn Reynolds; Gretchen E. Singletary; Dennis Trafny; Kevin Morine; Julio Sanmiguel; Sylvain Cecchini; Tamas Virag; Adeline Vulin; Cyriaque Beley; Janet R. Bogan; James M. Wilson; Krista Vandenborne; Joe N. Kornegay; Glenn A. Walter; Robert M. Kotin; Luis Garcia; H. Lee Sweeney

Although restoration of dystrophin expression via exon skipping in both cardiac and skeletal muscle has been successfully demonstrated in the mdx mouse, restoration of cardiac dystrophin expression in large animal models of Duchenne muscular dystrophy (DMD) has proven to be a challenge. In large animals, investigators have focused on using intravenous injection of antisense oligonucleotides (AO) to mediate exon skipping. In this study, we sought to optimize restoration of cardiac dystrophin expression in the golden retriever muscular dystrophy (GRMD) model using percutaneous transendocardial delivery of recombinant AAV6 (rAAV6) to deliver a modified U7 small nuclear RNA (snRNA) carrying antisense sequence to target the exon splicing enhancers of exons 6 and 8 and correct the disrupted reading frame. We demonstrate restoration of cardiac dystrophin expression at 13 months confirmed by reverse transcription-PCR (RT-PCR) and immunoblot as well as membrane localization by immunohistochemistry. This was accompanied by improved cardiac function as assessed by cardiac magnetic resonance imaging (MRI). Percutaneous transendocardial delivery of rAAV6 expressing a modified U7 exon skipping construct is a safe, effective method for restoration of dystrophin expression and improvement of cardiac function in the GRMD canine and may be easily translatable to human DMD patients.


Journal of Neuroscience Research | 2010

Glial Cell Line-Derived Neurotrophic Factor―Secreting Genetically Modified Human Bone Marrow-Derived Mesenchymal Stem Cells Promote Recovery in a Rat Model of Parkinson's Disease

Aleksandra Glavaski-Joksimovic; Tamas Virag; Michael McGrogan; Xue Song Wang; Martha C. Bohn

Parkinsons disease (PD) is a neurodegenerative disease characterized by progressive degeneration of nigrostriatal dopaminergic (DA) neurons. The therapeutic potential of glial cell line‐derived neurotrophic factor (GDNF), the most potent neurotrophic factor for DA neurons, has been demonstrated in many experimental models of PD. However, chronic delivery of GDNF to DA neurons in the brain remains an unmet challenge. Here, we report the effects of GDNF‐releasing Notch‐induced human bone marrow‐derived mesenchymal stem cells (MSC) grafted into striatum of the 6‐hydroxydopamine (6‐OHDA) progressively lesioned rat model of PD. Human MSC, obtained from bone marrow aspirates of young, healthy adult volunteers, were transiently transfected with the intracellular domain of the Notch1 gene (NICD) to generate SB623 cells. SB623 cells expressing GDNF and/or humanized Renilla green fluorescent protein (hrGFP) following lentiviral transduction or nontransduced cells were stereotaxically placed into rat striatum 1 week after a unilateral partial 6‐OHDA striatal lesion. At 4 weeks, rats that had received GDNF‐transduced SB623 cells had significantly decreased amphetamine‐induced rotation compared with control rats, although this effect was not observed in rats that received GFP‐transduced or nontransduced SB623 cells. At 5 weeks, rejuvenated tyrosine hydroxylase‐immunoreactive (TH‐IR) fibers that appeared to be host DA axons were observed in and around grafts. This effect was more prominent in rats that received GDNF‐secreting cells and was not observed in controls. These observations suggest that human bone‐marrow derived MSC, genetically modified to secrete GDNF, hold potential as an allogeneic or autologous stem cell therapy for PD.


Human Gene Therapy | 2009

Producing recombinant adeno-associated virus in foster cells: overcoming production limitations using a baculovirus-insect cell expression strategy.

Tamas Virag; Sylvain Cecchini; Robert M. Kotin

Establishing pharmacological parameters, such as efficacy, routes of administration, and toxicity, for recombinant adeno-associated virus (rAAV) vectors is a prerequisite for gaining acceptance for clinical applications. In fact, even a therapeutic window, that is, the dose range between therapeutic efficacy and toxicity, has yet to be determined for rAAV in vivo. Multiphase clinical trials investigating the safety and efficacy of recombinant AAV-based therapeutics will require unprecedented vector production capacity to meet the needs of preclinical toxicology studies, and the progressive clinical protocol phases of safety/dose escalation (phase I), efficacy (phase II), and high-enrollment, multicenter evaluations (phase III). Methods of rAAV production capable of supporting such trials must be scalable, robust, and efficient. We have taken advantage of the ease of scalability of nonadherent cell culture techniques coupled with the inherent efficiency of viral infection to develop an rAAV production method based on recombinant baculovirus-mediated expression of AAV components in insect-derived suspension cells.


Cell Transplantation | 2009

Reversal of dopaminergic degeneration in a parkinsonian rat following micrografting of human bone marrow-derived neural progenitors.

Aleksandra Glavaski-Joksimovic; Tamas Virag; Qin A. Chang; Neva C. West; Michael McGrogan; Millicent Dugich-Djordjevic; Martha C. Bohn

Parkinsons disease (PD) is a common neurodegenerative disease characterized by the selective loss of dopaminergic (DA) neurons in the midbrain. Various types of stem cells that have potential to differentiate into DA neurons are being investigated as cellular therapies for PD. Stem cells also secrete growth factors and therefore also may have therapeutic effects in promoting the health of diseased DA neurons in the PD brain. To address this possibility in an experimental model of PD, bone marrow-derived neuroprogenitor-like cells were generated from bone marrow procured from healthy human adult volunteers and their potential to elicit recovery of damaged DA axons was studied in a partial lesion rat model of PD. Following collection of bone marrow, mesenchymal stem cells (MSC) were isolated and then genetically modified to create SB623 cells by transient transfection with the intracellular domain of the Notch1 gene (NICD), a modification that upregulates expression of certain neuroprogenitor markers. Ten deposits of 0.5 μl of SB623 cell suspension adjusted from 6,000 to 21,000 cells/μl in PBS or PBS alone were stereotaxically placed in the striatum 1 week after the nigrostriatal projection had been partially lesioned in adult F344 rats by injection of 6-hydroxydopamine (6-OHDA) into the striatum. At 3 weeks, a small number of grafted SB623 cells survived in the lesioned striatum as visualized by expression of the human specific nuclear matrix protein (hNuMA). In rats that received SB623 cells, but not in control rats, dense tyrosine hydroxylase immunoreactive (TH-ir) fibers were observed around the grafts. These fibers appeared to be rejuvenated host DA axons because no TH-ir in soma of surviving SB623 cells or coexpression of TH and hNuMA-ir were observed. In addition, dense serotonin immunoreactive (5-HT-ir) fibers were observed around grafted SB623 cells and these fibers also appeared to be of the host origin. Also, in some SB623 grafted rats that were sacrificed within 2 h of dl-amphetamine injection, hot spots of c-Fos-positive nuclei that coincided with rejuvenated dense TH fibers around the grafted SB623 cells were observed, suggesting increased availability of DA in these locations. Our observations suggest that NICD-transfected MSC hold potential as a readily available autologous or allogenic cellular therapy for ameliorating the degeneration of DA and 5-HT neurons in PD patients.


Human Gene Therapy | 2011

Reproducible High Yields of Recombinant Adeno-Associated Virus Produced Using Invertebrate Cells in 0.02- to 200-Liter Cultures

Sylvain Cecchini; Tamas Virag; Robert M. Kotin

The large amounts of recombinant adeno-associated virus (rAAV) vector needed for clinical trials and eventual commercialization require robust, economical, reproducible, and scalable production processes compatible with current good manufacturing practice. rAAV produced using baculovirus and insect cells satisfies these conditions; however, recovering rAAV particles from 200-liter bioreactors is more complicated than bench-scale vector preparations. Using a variety of processing media, we developed a reliable and routine downstream procedure for rAAV production that is scalable from 0.02- to 200-liter cultures. To facilitate the upstream process, we adapted the titerless infected-cell preservation and scale-up process for rAAV production. Single-use aliquots of cryopreserved baculovirus-infected insect cells (BIIC) are thawed and added to the suspension culture to achieve the desired ratio of BIIC to rAAV-producer cells. By using conditions established with small-scale cultures, rAAV was produced in larger volume cultures. Strikingly consistent rAAV yields were attained in cultures ranging from 10 liters to 200 liters. Based on the final yield, each cell produced 18,000 ± 6,800 particles of purified rAAV in 10-, 20-, 100-, and 200-liter cultures. Thus, with an average cell density of 4.32 × 10(6) cells/ml, ≥ 10(16) purified rAAV particles are produced from 100 to 200 liters. The downstream process resulted in about 20% recovery estimated from comparing the quantities of capsid protein antigen in the crude bioreactor material and in the final, purified product. The ease and reproducibility of rAAV production in 200-liter bioreactors suggest that the limit has not been reached, and 500-liter productions are planned.


Gene Therapy | 2013

MRI roadmap-guided transendocardial delivery of exon-skipping recombinant adeno-associated virus restores dystrophin expression in a canine model of Duchenne muscular dystrophy

Israel M. Barbash; Sylvain Cecchini; Anthony Z. Faranesh; Tamas Virag; Lina Li; Yu Yang; Robert F. Hoyt; Joe N. Kornegay; Janet R. Bogan; Luis Garcia; Robert J. Lederman; Robert M. Kotin

Duchenne muscular dystrophy (DMD) cardiomyopathy patients currently have no therapeutic options. We evaluated catheter-based transendocardial delivery of a recombinant adeno-associated virus (rAAV) expressing a small nuclear U7 RNA (U7smOPT) complementary to specific cis-acting splicing signals. Eliminating specific exons restores the open reading frame resulting in translation of truncated dystrophin protein. To test this approach in a clinically relevant DMD model, golden retriever muscular dystrophy (GRMD) dogs received serotype 6 rAAV-U7smOPT via the intracoronary or transendocardial route. Transendocardial injections were administered with an injection-tipped catheter and fluoroscopic guidance using X-ray fused with magnetic resonance imaging (XFM) roadmaps. Three months after treatment, tissues were analyzed for DNA, RNA, dystrophin protein, and histology. Whereas intracoronary delivery did not result in effective transduction, transendocardial injections, XFM guidance, enabled 30±10 non-overlapping injections per animal. Vector DNA was detectable in all samples tested and ranged from <1 to >3000 vector genome copies per cell. RNA analysis, western blot analysis, and immunohistology demonstrated extensive expression of skipped RNA and dystrophin protein in the treated myocardium. Left ventricular function remained unchanged over a 3-month follow-up. These results demonstrated that effective transendocardial delivery of rAAV-U7smOPT was achieved using XFM. This approach restores an open reading frame for dystrophin in affected dogs and has potential clinical utility.


Developmental Neuroscience | 2006

Differentiated Dopaminergic MN9D Cells Only Partially Recapitulate the Electrophysiological Properties of Midbrain Dopaminergic Neurons

C.E. Rick; Allison D. Ebert; Tamas Virag; Martha C. Bohn; D.J. Surmeier

The cell line MN9D, a fusion of embryonic ventral mesencephalic and neuroblastoma cells, is extensively used as a model of dopamine (DA) neurons because it expresses tyrosine hydroxylase and synthesizes and releases DA. These cells are also used to test mechanisms and potential therapeutics relevant to the loss of DA neurons in Parkinson’s disease. To date, little work has been done to determine whether MN9D cells electrophysiologically resemble mature DA neurons. We examined sodium, calcium and potassium currents in undifferentiated and differentiated MN9D cells, and compared these to those found in acutely dissociated mouse substantia nigra pars compacta DA neurons. It was observed that undifferentiated MN9D cells bore no resemblance to DA neurons. Upon differentiation with butyric acid with or without a prior treatment with glial cell line-derived neurotrophic factor, differentiated MN9D cells produce an electrophysiological profile that more closely resembles substantia nigra pars compacta DA neurons even though the A-type potassium current remains noticeably absent. These observations demonstrate that undifferentiated MN9D cells are not reasonable models of DA neurons. Although differentiated MN9D cells are closer to the mature DA neuronal phenotype, they do not fully mimic DA neurons and are likely to be of questionable value as a model because of their substantive differences, including the lack of the characteristic A-type potassium current. The future use of one or a combination of growth or other factors to differentiate MN9D cells may yield a more useful model system for Parkinson’s disease studies in vitro.


Clinical and Vaccine Immunology | 2009

Evidence of Prior Exposure to Human Bocavirus as Determined by a Retrospective Serological Study of 404 Serum Samples from Adults in the United States

Sylvain Cecchini; Alejandro Negrete; Tamas Virag; Barney S. Graham; Jeffrey I. Cohen; Robert M. Kotin

ABSTRACT Recently, molecular screening for pathogenic agents has identified a partial genome of a novel parvovirus, called human bocavirus (HBoV). The presence of this newly described parvovirus correlated with upper and lower respiratory tract infections in children. Lower respiratory tract infections are a leading cause of hospital admission in children, and the etiological agent has not been identified in up to 39% of these cases. Using baculovirus expression vectors (BEVs) and an insect cell system, we produced virus-like particles (VLPs) of HBoV. The engineered BEVs express the HBoV capsid proteins stoichiometrically from a single open reading frame. Three capsid proteins assemble into the VLP rather than two proteins predicted from the HBoV genome sequence. The denatured capsid proteins VP1, VP2, and VP3 resolve on silver-stained sodium dodecyl sulfate-polyacrylamide gels as three bands with apparent molecular masses of 72 kDa, 68 kDa, and 62 kDa, respectively. VP2 apparently initiates at a GCT codon (alanine) 273 nucleotides downstream from the VP1 start site and 114 nucleotides upstream from the VP3 initiation site. We characterized the stable capsids using physical, biochemical, and serological techniques. We found that the density of the VLP is 1.32 g/cm3 and is consistent with an icosahedral symmetry with approximately a 25-nm diameter. Rabbit antiserum against the capsid of HBoV, which did not cross-react with adeno-associated virus type 2, was used to develop enzyme-linked immunosorbent assays (ELISAs) for anti-HBoV antibodies in human serum. Using ELISA, we tested 404 human serum samples and established a range of antibody titers in a large U.S. adult population sample.


Gene Therapy | 2010

Lack of humoral immune response to the tetracycline (Tet) activator in rats injected intracranially with Tet-off rAAV vectors

Ye Han; Qin A. Chang; Tamas Virag; Neva C. West; David George; Maria G. Castro; Martha C. Bohn

The ability to safely control transgene expression from viral vectors is a long-term goal in the gene therapy field. We have previously reported tight regulation of GFP expression in rat brain using a self-regulating tet-off rAAV vector. The immune responses against tet regulatory elements observed by other groups in nonhuman primates after intramuscular injection of tet-on encoding vectors raise concerns about the clinical value of tet-regulated vectors. However, previous studies have not examined immune responses following injection of AAV vectors into brain. Therefore, rat striatum was injected with tet-off rAAV harboring a therapeutic gene for Parkinsons disease, either hAADC or hGDNF. The expression of each gene was tightly controlled by the tet-off regulatory system. Using an ELISA developed with purified GST–tTA protein, no detectable immunogenicity against tTA was observed in sera of rats that received an intrastriatal injection of either vector. In contrast, sera from rats intradermally injected with an adenovirus containing either tTA or rtTA, as positive controls, had readily detectable antibodies. These observations suggest that tet-off rAAV vectors do not elicit an immune response when injected into rat brain and that these may offer safer vectors for Parkinsons disease than vectors with constitutive expression.


Scientific Reports | 2016

Germline viral “fossils” guide in silico reconstruction of a mid-Cenozoic era marsupial adeno-associated virus

Richard J.H. Smith; Claus V. Hallwirth; Michael Westerman; Nicola A. Hetherington; Yu-Shan Tseng; Sylvain Cecchini; Tamas Virag; Mona-Larissa Ziegler; Igor B. Rogozin; Eugene V. Koonin; Mavis Agbandje-McKenna; Robert M. Kotin; Ian E. Alexander

Germline endogenous viral elements (EVEs) genetically preserve viral nucleotide sequences useful to the study of viral evolution, gene mutation, and the phylogenetic relationships among host organisms. Here, we describe a lineage-specific, adeno-associated virus (AAV)-derived endogenous viral element (mAAV-EVE1) found within the germline of numerous closely related marsupial species. Molecular screening of a marsupial DNA panel indicated that mAAV-EVE1 occurs specifically within the marsupial suborder Macropodiformes (present-day kangaroos, wallabies, and related macropodoids), to the exclusion of other Diprotodontian lineages. Orthologous mAAV-EVE1 locus sequences from sixteen macropodoid species, representing a speciation history spanning an estimated 30 million years, facilitated compilation of an inferred ancestral sequence that recapitulates the genome of an ancient marsupial AAV that circulated among Australian metatherian fauna sometime during the late Eocene to early Oligocene. In silico gene reconstruction and molecular modelling indicate remarkable conservation of viral structure over a geologic timescale. Characterisation of AAV-EVE loci among disparate species affords insight into AAV evolution and, in the case of macropodoid species, may offer an additional genetic basis for assignment of phylogenetic relationships among the Macropodoidea. From an applied perspective, the identified AAV “fossils” provide novel capsid sequences for use in translational research and clinical applications.

Collaboration


Dive into the Tamas Virag's collaboration.

Top Co-Authors

Avatar

Robert M. Kotin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sylvain Cecchini

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ciara C. Tate

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Alejandro Negrete

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barney S. Graham

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Eugene V. Koonin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Igor B. Rogozin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Janet R. Bogan

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge