Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tamer T. Onder is active.

Publication


Featured researches published by Tamer T. Onder.


Cell | 2009

Identification of Selective Inhibitors of Cancer Stem Cells by High-Throughput Screening

Piyush B. Gupta; Tamer T. Onder; Guozhi Jiang; Kai Tao; Charlotte Kuperwasser; Robert A. Weinberg; Eric S. Lander

Screens for agents that specifically kill epithelial cancer stem cells (CSCs) have not been possible due to the rarity of these cells within tumor cell populations and their relative instability in culture. We describe here an approach to screening for agents with epithelial CSC-specific toxicity. We implemented this method in a chemical screen and discovered compounds showing selective toxicity for breast CSCs. One compound, salinomycin, reduces the proportion of CSCs by >100-fold relative to paclitaxel, a commonly used breast cancer chemotherapeutic drug. Treatment of mice with salinomycin inhibits mammary tumor growth in vivo and induces increased epithelial differentiation of tumor cells. In addition, global gene expression analyses show that salinomycin treatment results in the loss of expression of breast CSC genes previously identified by analyses of breast tissues isolated directly from patients. This study demonstrates the ability to identify agents with specific toxicity for epithelial CSCs.


Cancer Research | 2008

Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways.

Tamer T. Onder; Piyush B. Gupta; Sendurai A. Mani; Jing Yang; Eric S. Lander; Robert A. Weinberg

Loss of the epithelial adhesion molecule E-cadherin is thought to enable metastasis by disrupting intercellular contacts-an early step in metastatic dissemination. To further investigate the molecular basis of this notion, we use two methods to inhibit E-cadherin function that distinguish between E-cadherins cell-cell adhesion and intracellular signaling functions. Whereas the disruption of cell-cell contacts alone does not enable metastasis, the loss of E-cadherin protein does, through induction of an epithelial-to-mesenchymal transition, invasiveness, and anoikis resistance. We find the E-cadherin binding partner beta-catenin to be necessary, but not sufficient, for induction of these phenotypes. In addition, gene expression analysis shows that E-cadherin loss results in the induction of multiple transcription factors, at least one of which, Twist, is necessary for E-cadherin loss-induced metastasis. These findings indicate that E-cadherin loss in tumors contributes to metastatic dissemination by inducing wide-ranging transcriptional and functional changes.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes

Joseph H. Taube; Jason I. Herschkowitz; Kakajan Komurov; Alicia Y. Zhou; Supriya Gupta; Jing Yang; Kimberly A. Hartwell; Tamer T. Onder; Piyush B. Gupta; Kurt W. Evans; Brett G. Hollier; Prahlad T. Ram; Eric S. Lander; Jeffrey M. Rosen; Robert A. Weinberg; Sendurai A. Mani

The epithelial-to-mesenchymal transition (EMT) produces cancer cells that are invasive, migratory, and exhibit stem cell characteristics, hallmarks of cells that have the potential to generate metastases. Inducers of the EMT include several transcription factors (TFs), such as Goosecoid, Snail, and Twist, as well as the secreted TGF-β1. Each of these factors is capable, on its own, of inducing an EMT in the human mammary epithelial (HMLE) cell line. However, the interactions between these regulators are poorly understood. Overexpression of each of the above EMT inducers up-regulates a subset of other EMT-inducing TFs, with Twist, Zeb1, Zeb2, TGF-β1, and FOXC2 being commonly induced. Up-regulation of Slug and FOXC2 by either Snail or Twist does not depend on TGF-β1 signaling. Gene expression signatures (GESs) derived by overexpressing EMT-inducing TFs reveal that the Twist GES and Snail GES are the most similar, although the Goosecoid GES is the least similar to the others. An EMT core signature was derived from the changes in gene expression shared by up-regulation of Gsc, Snail, Twist, and TGF-β1 and by down-regulation of E-cadherin, loss of which can also trigger an EMT in certain cell types. The EMT core signature associates closely with the claudin-low and metaplastic breast cancer subtypes and correlates negatively with pathological complete response. Additionally, the expression level of FOXC1, another EMT inducer, correlates strongly with poor survival of breast cancer patients.


Nature Genetics | 2010

Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells

Sabine Loewer; Moran N. Cabili; Mitchell Guttman; Yuin-Han Loh; Kelly Thomas; In-Hyun Park; Manuel Garber; Matthew Curran; Tamer T. Onder; Suneet Agarwal; Philip D. Manos; Sumon Datta; Eric S. Lander; Thorsten M. Schlaeger; George Q. Daley; John L. Rinn

The conversion of lineage-committed cells to induced pluripotent stem cells (iPSCs) by reprogramming is accompanied by a global remodeling of the epigenome, resulting in altered patterns of gene expression. Here we characterize the transcriptional reorganization of large intergenic non-coding RNAs (lincRNAs) that occurs upon derivation of human iPSCs and identify numerous lincRNAs whose expression is linked to pluripotency. Among these, we defined ten lincRNAs whose expression was elevated in iPSCs compared with embryonic stem cells, suggesting that their activation may promote the emergence of iPSCs. Supporting this, our results indicate that these lincRNAs are direct targets of key pluripotency transcription factors. Using loss-of-function and gain-of-function approaches, we found that one such lincRNA (lincRNA-RoR) modulates reprogramming, thus providing a first demonstration for critical functions of lincRNAs in the derivation of pluripotent stem cells.


Nature | 2012

Chromatin Modifying Enzymes as Modulators of Reprogramming

Tamer T. Onder; Nergis Kara; Anne Cherry; Amit U. Sinha; Nan Zhu; Kathrin M. Bernt; Patrick Cahan; B. Ogan Mancarci; Juli Unternaehrer; Piyush B. Gupta; Eric S. Lander; Scott A. Armstrong; George Q. Daley

Generation of induced pluripotent stem cells (iPSCs) by somatic cell reprogramming involves global epigenetic remodelling. Whereas several proteins are known to regulate chromatin marks associated with the distinct epigenetic states of cells before and after reprogramming, the role of specific chromatin-modifying enzymes in reprogramming remains to be determined. To address how chromatin-modifying proteins influence reprogramming, we used short hairpin RNAs (shRNAs) to target genes in DNA and histone methylation pathways, and identified positive and negative modulators of iPSC generation. Whereas inhibition of the core components of the polycomb repressive complex 1 and 2, including the histone 3 lysine 27 methyltransferase EZH2, reduced reprogramming efficiency, suppression of SUV39H1, YY1 and DOT1L enhanced reprogramming. Specifically, inhibition of the H3K79 histone methyltransferase DOT1L by shRNA or a small molecule accelerated reprogramming, significantly increased the yield of iPSC colonies, and substituted for KLF4 and c-Myc (also known as MYC). Inhibition of DOT1L early in the reprogramming process is associated with a marked increase in two alternative factors, NANOG and LIN28, which play essential functional roles in the enhancement of reprogramming. Genome-wide analysis of H3K79me2 distribution revealed that fibroblast-specific genes associated with the epithelial to mesenchymal transition lose H3K79me2 in the initial phases of reprogramming. DOT1L inhibition facilitates the loss of this mark from genes that are fated to be repressed in the pluripotent state. These findings implicate specific chromatin-modifying enzymes as barriers to or facilitators of reprogramming, and demonstrate how modulation of chromatin-modifying enzymes can be exploited to more efficiently generate iPSCs with fewer exogenous transcription factors.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Autocrine TGF-β and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts

Yasushi Kojima; Ahmet Acar; Elinor Ng Eaton; Kieran T. Mellody; Christina Scheel; Ittai Ben-Porath; Tamer T. Onder; Zhigang C. Wang; Andrea L. Richardson; Robert A. Weinberg; Akira Orimo

Much interest is currently focused on the emerging role of tumor-stroma interactions essential for supporting tumor progression. Carcinoma-associated fibroblasts (CAFs), frequently present in the stroma of human breast carcinomas, include a large number of myofibroblasts, a hallmark of activated fibroblasts. These fibroblasts have an ability to substantially promote tumorigenesis. However, the precise cellular origins of CAFs and the molecular mechanisms by which these cells evolve into tumor-promoting myofibroblasts remain unclear. Using a coimplantation breast tumor xenograft model, we show that resident human mammary fibroblasts progressively convert into CAF myofibroblasts during the course of tumor progression. These cells increasingly acquire two autocrine signaling loops, mediated by TGF-β and SDF-1 cytokines, which both act in autostimulatory and cross-communicating fashions. These autocrine-signaling loops initiate and maintain the differentiation of fibroblasts into myofibroblasts and the concurrent tumor-promoting phenotype. Collectively, these findings indicate that the establishment of the self-sustaining TGF-β and SDF-1 autocrine signaling gives rise to tumor-promoting CAF myofibroblasts during tumor progression. This autocrine-signaling mechanism may prove to be an attractive therapeutic target to block the evolution of tumor-promoting CAFs.


Science | 2013

Influence of Threonine Metabolism on S-Adenosylmethionine and Histone Methylation

Ng Shyh-Chang; Jason W. Locasale; Costas A. Lyssiotis; Yuxiang Zheng; Ren Yi Teo; Sutheera Ratanasirintrawoot; Jin Zhang; Tamer T. Onder; Juli Unternaehrer; Hao Zhu; John M. Asara; George Q. Daley; Lewis C. Cantley

SAM, Histones, and Stem Cells Mouse embryonic stem cells require threonine for growth and express large amounts of the enzyme that catalyzes the first step in threonine metabolism. To find out what is so important about threonine in these cells, Shyh-Change et al. (p. 222, published online 1 November; see the Perspective by Sassone-Corsi) monitored changes in metabolism by mass spectrometry in induced pluripotent stem cells. Threonine was required to maintain cellular concentrations of S-adenosylmethionine (SAM), a substrate used for protein methylation. Restriction of threonine inhibited methylation of histones, which is characteristic of chromatin in embryonic stem cells. Thus, altered metabolism of threonine and methionine in stem cells may be linked to epigenetic changes that influence genetic reprogramming and decisions of stem cells to proliferate or differentiate. Unusual threonine metabolism in mouse stem cells influences genetic reprogramming via altered histone methylation. [Also see Perspective by Sassone-Corsi] Threonine is the only amino acid critically required for the pluripotency of mouse embryonic stem cells (mESCs), but the detailed mechanism remains unclear. We found that threonine and S-adenosylmethionine (SAM) metabolism are coupled in pluripotent stem cells, resulting in regulation of histone methylation. Isotope labeling of mESCs revealed that threonine provides a substantial fraction of both the cellular glycine and the acetyl–coenzyme A (CoA) needed for SAM synthesis. Depletion of threonine from the culture medium or threonine dehydrogenase (Tdh) from mESCs decreased accumulation of SAM and decreased trimethylation of histone H3 lysine 4 (H3K4me3), leading to slowed growth and increased differentiation. Thus, abundance of SAM appears to influence H3K4me3, providing a possible mechanism by which modulation of a metabolic pathway might influence stem cell fate.


Nature Cell Biology | 2011

Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity

Tse-Chun Kuo; Chun-Ting Chen; Desiree M. Baron; Tamer T. Onder; Sabine Loewer; Sandra Almeida; Cara M. Weismann; Ping Xu; JeanMarie Houghton; Fen-Biao Gao; George Q. Daley

The midbody is a singular organelle formed between daughter cells during cytokinesis and required for their final separation. Midbodies persist in cells long after division as midbody derivatives (MBds), but their fate is unclear. Here we show that MBds are inherited asymmetrically by the daughter cell with the older centrosome. They selectively accumulate in stem cells, induced pluripotent stem cells and potential cancer ‘stem cells’ in vivo and in vitro. MBd loss accompanies stem-cell differentiation, and involves autophagic degradation mediated by binding of the autophagic receptor NBR1 to the midbody protein CEP55. Differentiating cells and normal dividing cells do not accumulate MBds and possess high autophagic activity. Stem cells and cancer cells accumulate MBds by evading autophagosome encapsulation and exhibit low autophagic activity. MBd enrichment enhances reprogramming to induced pluripotent stem cells and increases the in vitro tumorigenicity of cancer cells. These results indicate unexpected roles for MBds in stem cells and cancer ‘stem cells’.


Cancer Research | 2007

Adaptation versus Selection: The Origins of Metastatic Behavior

Christina Scheel; Tamer T. Onder; Antoine E. Karnoub; Robert A. Weinberg

During the formation of a primary tumor, premalignant cells acquire a series of genetic and epigenetic changes that enable them to proliferate in the absence of growth factors, to resist proapoptotic stimuli, and to stimulate angiogenesis ( [1][1]). Each of these acquired traits confers a distinct


Proceedings of the National Academy of Sciences of the United States of America | 2009

Continuous elimination of oxidized nucleotides is necessary to prevent rapid onset of cellular senescence

Priyamvada Rai; Tamer T. Onder; Jennifer J. Young; Jose Luis McFaline; Bo Pang; Peter C. Dedon; Robert A. Weinberg

Reactive oxygen species (ROS) appear to play a role in limiting both cellular and organismic lifespan. However, because of their pleiotropic effects, it has been difficult to ascribe a specific role to ROS in initiating the process of cellular senescence. We have studied the effects of oxidative DNA damage on cell proliferation, believing that such damage is of central importance to triggering senescence. To do so, we devised a strategy to decouple levels of 8-oxoguanine, a major oxidative DNA lesion, from ROS levels. Suppression of MTH1 expression, which hydrolyzes 8-oxo-dGTP, was accompanied by increased total cellular 8-oxoguanine levels and caused early-passage primary and telomerase-immortalized human skin fibroblasts to rapidly undergo senescence, doing so without altering cellular ROS levels. This senescent phenotype recapitulated several salient features of replicative senescence, notably the presence of senescence-associated beta-galactosidase (SA beta-gal) activity, apparently irreparable genomic DNA breaks, and elevation of p21Cip1, p53, and p16INK4A tumor suppressor protein levels. Culturing cells under low oxygen tension (3%) largely prevented the shMTH1-dependent senescent phenotype. These results indicate that the nucleotide pool is a critical target of intracellular ROS and that oxidized nucleotides, unless continuously eliminated, can rapidly induce cell senescence through signaling pathways very similar to those activated during replicative senescence.

Collaboration


Dive into the Tamer T. Onder's collaboration.

Top Co-Authors

Avatar

Robert A. Weinberg

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Piyush B. Gupta

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sendurai Mani

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mai-Jing Liao

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sendurai A. Mani

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge