Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tammy Ellis is active.

Publication


Featured researches published by Tammy Ellis.


Cancer Cell | 2008

Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells

Zeng-Jie Yang; Tammy Ellis; Shirley L. Markant; Tracy-Ann Read; Jessica D. Kessler; Melissa Bourboulas; Ulrich Schüller; Robert P. Machold; Gord Fishell; David H. Rowitch; Brandon J. Wainwright; Robert J. Wechsler-Reya

Medulloblastoma is the most common malignant brain tumor in children, but the cells from which it arises remain unclear. Here we examine the origin of medulloblastoma resulting from mutations in the Sonic hedgehog (Shh) pathway. We show that activation of Shh signaling in neuronal progenitors causes medulloblastoma by 3 months of age. Shh pathway activation in stem cells promotes stem cell proliferation but only causes tumors after commitment to-and expansion of-the neuronal lineage. Notably, tumors initiated in stem cells develop more rapidly than those initiated in progenitors, with all animals succumbing by 3-4 weeks. These studies suggest that medulloblastoma can be initiated in progenitors or stem cells but that Shh-induced tumorigenesis is associated with neuronal lineage commitment.


Development | 2004

An in vivo comparative study of sonic, desert and Indian hedgehog reveals that hedgehog pathway activity regulates epidermal stem cell homeostasis

Christelle Adolphe; Monica Narang; Tammy Ellis; Carol Wicking; Pritinder Kaur; Brandon J. Wainwright

Despite the well-characterised role of sonic hedgehog (Shh) in promoting interfollicular basal cell proliferation and hair follicle downgrowth, the role of hedgehog signalling during epidermal stem cell fate remains largely uncharacterised. In order to determine whether the three vertebrate hedgehog molecules play a role in regulating epidermal renewal we overexpressed sonic (Shh), desert (Dhh) and Indian (Ihh) hedgehog in the basal cells of mouse skin under the control of the human keratin 14 promoter. We observed no overt epidermal morphogenesis phenotype in response to Ihh overexpression, however Dhh overexpression resulted in a range of embryonic and adult skin manifestations indistinguishable from Shh overexpression. Two distinct novel phenotypes were observed amongst Shh and Dhh transgenics, one exhibiting epidermal progenitor cell hyperplasia with the other displaying a complete loss of epidermal tissue renewal indicating deregulation of stem cell activity. These data suggest that correct temporal regulation of hedgehog activity is a key factor in ensuring epidermal stem cell maintenance. In addition, we observed Shh and Dhh transgenic skin from both phenotypes developed lesions reminiscent of human basal cell carcinoma (BCC), indicating that BCCs can be generated despite the loss of much of the proliferative (basal) compartment. These data suggest the intriguing possibility that BCC can arise outside the stem cell population. Thus the elucidation of Shh (and Dhh) target gene activation in the skin will likely identify those genes responsible for increasing the proliferative potential of epidermal basal cells and the mechanisms involved in regulating epidermal stem cell fate.


PLOS ONE | 2011

Sonic hedgehog and notch signaling can cooperate to regulate neurogenic divisions of neocortical progenitors

Richa K. Dave; Tammy Ellis; Melissa C. Toumpas; Jonathan P. Robson; Elaine Julian; Christelle Adolphe; Perry F. Bartlett; Helen M. Cooper; Brent A. Reynolds; Brandon J. Wainwright

Background Hedgehog (Hh) signaling is crucial for the generation and maintenance of both embryonic and adult stem cells, thereby regulating development and tissue homeostasis. In the developing neocortex, Sonic Hedgehog (Shh) regulates neural progenitor cell proliferation. During neurogenesis, radial glial cells of the ventricular zone (VZ) are the predominant neocortical progenitors that generate neurons through both symmetric and asymmetric divisions. Despite its importance, relatively little is known of the molecular pathways that control the switch from symmetric proliferative to differentiative/neurogenic divisions in neural progenitors. Principal Findings Here, we report that conditional inactivation of Patched1, a negative regulator of the Shh pathway, in Nestin positive neural progenitors of the neocortex leads to lamination defects due to improper corticogenesis and an increase in the number of symmetric proliferative divisions of the radial glial cells. Hedgehog-activated VZ progenitor cells demonstrated a concomitant upregulation of Hes1 and Blbp, downstream targets of Notch signaling. The Notch signaling pathway plays a pivotal role in the maintenance of stem/progenitor cells and the regulation of glial versus neuronal identity. To study the effect of Notch signaling on Hh-activated neural progenitors, we inactivated both Patched1 and Rbpj, a transcriptional mediator of Notch signaling, in Nestin positive cells of the neocortex. Conclusions Our data indicate that by mid neurogenesis (embryonic day 14.5), attenuation of Notch signaling reverses the effect of Patched1 deletion on neurogenesis by restoring the balance between symmetric proliferative and neurogenic divisions. Hence, our results demonstrate that correct corticogenesis is an outcome of the interplay between the Hh and Notch signaling pathways.


Developmental Biology | 2003

Overexpression of sonic hedgehog suppresses embryonic hair follicle morphogenesis

Tammy Ellis; Ian Smyth; Emily Riley; Josephine Bowles; Christelle Adolphe; Joseph A. Rothnagel; Carol Wicking; Brandon J. Wainwright

The Sonic Hedgehog (Shh) signalling pathway plays a central role in the development of the skin and hair follicle and is a major determinant of skin tumorigenesis, most notably of basal cell carcinoma (BCC). Various mouse models involving either ablation or overexpression of key members of the Shh signalling pathway display a range of skin tumours. To further examine the role of Shh in skin development, we have overexpressed Shh in a subset of interfollicular basal cells from 12.5 dpc under the control of the human keratin 1 (HK1) promoter. The HK1-Shh transgenic mice display a range of skin anomalies, including highly pigmented inguinal lesions and regions of alopecia. The most striking hair follicle phenotype is a suppression in embryonic follicle development between 14.0 and 19.0 dpc, resulting in a complete absence of guard, awl, and auchene hair fibres. These data indicate that alternative signals are responsible for the development of different hair follicles and point to a major role of Shh signalling in the morphogenesis of guard, awl, and auchene hair fibres. Through a comparison with other mouse models, the characteristics of the HK1-Shh transgenic mice suggest that the precise timing and site of Shh expression are key in dictating the resultant skin and tumour phenotype.


Oncogene | 2013

Direct effects of Bmi1 on p53 protein stability inactivates oncoprotein stress responses in embryonal cancer precursor cells at tumor initiation

M Calao; Eric Sekyere; Hongjuan Cui; Belamy B. Cheung; W D Thomas; Joanna Keating; J Chen; Anna Raif; K Jankowski; N P Davies; M V Bekkum; B Chen; Owen Tan; Tammy Ellis; Murray D. Norris; Michelle Haber; E S Kim; Jason M. Shohet; Toby Trahair; Tao Liu; Brandon J. Wainwright; Han Fei Ding; Glenn M. Marshall

Embryonal cancer can arise from postnatally persistent embryonal remnant or rest cells, which are uniquely characterized by the absence of p53 mutations. Perinatal overexpression of the MycN oncoprotein in embryonal cancer precursor cells causes postnatal rests, and later tumor formation through unknown mechanisms. However, overexpression of Myc in adult tissues normally activates apoptosis and/or senescence signals as an organismal defense mechanism against cancer. Here, we show that perinatal neuroblastoma precursor cells exhibited a transiently diminished p53 response to MycN oncoprotein stress and resistance to trophic factor withdrawal, compared with their adult counterpart cells from the TH-MYCN+/+ transgenic mouse model of neuroblastoma. The adult stem cell maintenance factor and Polycomb group protein, Bmi1 (B-cell-specific Moloney murine leukemia virus integration site), had a critical role at neuroblastoma initiation in the model, by repressing p53 responses in precursor cells. We further show in neuroblastoma tumor cells that Bmi1 could directly bind p53 in a complex with other Polycomb complex proteins, Ring1A or Ring1B, leading to increased p53 ubiquitination and degradation. Repressed p53 signal responses were also seen in precursor cells for other embryonal cancer types, medulloblastoma and acute lymphoblastic leukemia. Collectively, these date indicate a general mechanism for p53 inactivation in some embryonal cell types and consequent susceptibility to MycN oncogenesis at the point of embryonal tumor initiation.


Oncogene | 2009

Patched1 deletion increases N-Myc protein stability as a mechanism of medulloblastoma initiation and progression

Wayne Thomas; J Chen; Y R Gao; Belamy B. Cheung; Jessica Koach; Eric Sekyere; Murray D. Norris; Michelle Haber; Tammy Ellis; Brandon J. Wainwright; Glenn M. Marshall

Medulloblastoma tumorigenesis caused by inactivating mutations in the PATCHED1 (PTCH1) gene is initiated by persistently activated Sonic Hedgehog (Shh) signaling in granule neuron precursors (GNPs) during the late stages of cerebellar development. Both normal cerebellar development and Shh-driven medulloblastoma tumorigenesis require N-Myc expression. However, the mechanisms by which N-Myc affects the stages of medulloblastoma initiation and progression are unknown. Here we used a mouse model of Ptch1 heterozygosity and medulloblastoma to show that increased N-Myc expression characterized the earliest selection of focal GNP hyperplasia destined for later tumor progression. Step-wise loss of Ptch1 expression, from tumor initiation to progression, led to incremental increases in N-Myc protein, rather than mRNA, expression. Increased N-Myc resulted in enhanced proliferation and death resistance of perinatal GNPs at tumor initiation. Sequential N-Myc protein phosphorylation at serine-62 and serine-62/threonine-58 characterized the early and late stages of medulloblastoma tumorigenesis, respectively. Shh pathway activation led to increased Myc protein stability and reduced expression of key regulatory factors. Taken together our data identify N-Myc protein stability as the result of loss of Ptch1, which distinguishes normal cerebellar development from medulloblastoma tumorigenesis.


Developmental Biology | 2011

Ptch1-mediated dosage-dependent action of Shh signaling regulates neural progenitor development at late gestational stages

Yayoi Shikata; Toshiaki Okada; Mitsuhiro Hashimoto; Tammy Ellis; Daisuke Matsumaru; Toshihiko Shiroishi; Masaharu Ogawa; Brandon J. Wainwright; Jun Motoyama

Sonic hedgehog (Shh) signaling regulates cell differentiation and proliferation during brain development. However, the role of Shh in neurogenesis during late gestation (embryonic day 13.5-18.5) remains unclear. Herein, we used a genetic approach and in utero electroporation to investigate the role of mouse Shh and patched homolog 1 (Ptch1), the putative receptor for Shh. Proliferating cortical intermediate (basal) progenitor cells (IPCs) were severely reduced in Shh mutant mice, suggesting that endogenous Shh signaling could play an essential role in cortical IPC development. During cortical neurogenesis, strong upregulation of Shh signaling enhanced the transition from ventricular zone (VZ) progenitors to ventralized IPCs, while low levels of signaling enhanced the generation and proliferation of cortical IPCs in the subventricular zone. The effects of Shh upregulation in this study were consistent with a phenotype of conditional loss of function of Ptch1, and the phenotype of a hypomorphic allele of Ptch1, respectively. These data indicated that endogenous Ptch1 mediates the broad effects of Shh on the transition from VZ progenitors to IPCs and activation of proliferation of the IPCs in the cortex during late gestational stages.


PLOS ONE | 2013

Proliferation of Murine Midbrain Neural Stem Cells Depends upon an Endogenous Sonic Hedgehog (Shh) Source

Constanza Martínez; Víctor Hugo Cornejo; Pablo Lois; Tammy Ellis; Natalia Solís; Brandon J. Wainwright; Verónica Palma

The Sonic Hedgehog (Shh) pathway is responsible for critical patterning events early in development and for regulating the delicate balance between proliferation and differentiation in the developing and adult vertebrate brain. Currently, our knowledge of the potential role of Shh in regulating neural stem cells (NSC) is largely derived from analyses of the mammalian forebrain, but for dorsal midbrain development it is mostly unknown. For a detailed understanding of the role of Shh pathway for midbrain development in vivo, we took advantage of mouse embryos with cell autonomously activated Hedgehog (Hh) signaling in a conditional Patched 1 (Ptc1) mutant mouse model. This animal model shows an extensive embryonic tectal hypertrophy as a result of Hh pathway activation. In order to reveal the cellular and molecular origin of this in vivo phenotype, we established a novel culture system to evaluate neurospheres (nsps) viability, proliferation and differentiation. By recreating the three-dimensional (3-D) microenvironment we highlight the pivotal role of endogenous Shh in maintaining the stem cell potential of tectal radial glial cells (RGC) and progenitors by modulating their Ptc1 expression. We demonstrate that during late embryogenesis Shh enhances proliferation of NSC, whereas blockage of endogenous Shh signaling using cyclopamine, a potent Hh pathway inhibitor, produces the opposite effect. We propose that canonical Shh signaling plays a central role in the control of NSC behavior in the developing dorsal midbrain by acting as a niche factor by partially mediating the response of NSC to epidermal growth factor (EGF) and fibroblast growth factor (FGF) signaling. We conclude that endogenous Shh signaling is a critical mechanism regulating the proliferation of stem cell lineages in the embryonic dorsal tissue.


Mechanisms of Development | 2005

Patched ablation in neuronal precursors leads to defects in CNS patterning and abnormal regulation of the neuronal stem cell population

Tammy Ellis; M. Bourboulas; Natalie D. Bull; Perry F. Bartlett; Brandon J. Wainwright

Multipotent stem cells are thought to be responsible for the generation of new neurons in the adult brain. Neurogenesis also occurs in an accessible part of the nervous system, the olfactory mucosa. We show here that cells from human olfactory mucosa generate neurospheres that are multipotent in vitro and when transplanted into the chicken embryo. Cloned neurosphere cells show this multipotency. Multipotency was evident without prior culture in vitro: cells dissociated from adult rat olfactory mucosa generate leukocytes when transplanted into bone-marrow irradiated hosts and cells dissociated from adult mouse olfactory epithelium generated numerous cell types when transplanted into the chicken embryo. It is unlikely that these results can be attributed to hematopoietic precursor contamination or cell fusion. These results demonstrate the existence of a multipotent stem-like cell in the olfactory mucosa useful for autologous transplantation therapies and for cellular studies of disease. To date we have instigated two tissue repair strategies using olfactory stem cells and here report data generated from two pilot studies: those of a rat model of Parkinsons disease and of a rat model of cardiac infarct.


Cancer Research | 2006

Patched1 Functions as a Gatekeeper by Promoting Cell Cycle Progression

Christelle Adolphe; Rehan Hetherington; Tammy Ellis; Brandon J. Wainwright

Collaboration


Dive into the Tammy Ellis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carol Wicking

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emily Riley

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Monica Narang

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Belamy B. Cheung

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Eric Sekyere

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

J Chen

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge