Tamson V. Moore
University of Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tamson V. Moore.
Nature Medicine | 2012
Andrew Zloza; Frederick J. Kohlhapp; Gretchen E. Lyons; Jason M. Schenkel; Tamson V. Moore; Andrew T. Lacek; Jeremy A. O'Sullivan; Vineeth Varanasi; Jesse W. Williams; Michael C. Jagoda; Emily Bellavance; Amanda L. Marzo; Paul G. Thomas; Biljana Zafirova; Bojan Polić; Lena Al-Harthi; Anne I. Sperling; José A. Guevara-Patiño
CD4-unhelped CD8+ T cells are functionally defective T cells primed in the absence of CD4+ T cell help. Given the co-stimulatory role of natural-killer group 2, member D protein (NKG2D) on CD8+ T cells, we investigated its ability to rescue these immunologically impotent cells. We demonstrate that augmented co-stimulation through NKG2D during priming paradoxically rescues memory, but not effector, CD8+ T cell responses. NKG2D-mediated rescue is characterized by reversal of elevated transcription factor T-box expressed in T cells (T-bet) expression and recovery of interleukin-2 and interferon-γ production and cytolytic responses. Rescue is abrogated in CD8+ T cells lacking NKG2D. Augmented co-stimulation through NKG2D confers a high rate of survival to mice lacking CD4+ T cells in a CD4-dependent influenza model and rescues HIV-specific CD8+ T cell responses from CD4-deficient HIV-positive donors. These findings demonstrate that augmented co-stimulation through NKG2D is effective in rescuing CD4-unhelped CD8+ T cells from their pathophysiological fate and may provide therapeutic benefits.
Hepatology | 2006
Glenda G. Callender; Hugo R. Rosen; Jeffrey J. Roszkowski; Gretchen E. Lyons; Mingli Li; Tamson V. Moore; Natasha Brasic; Mark D. McKee; Michael I. Nishimura
Hepatitis C virus (HCV) has been reported to elicit B and T cell immunity in infected patients. Despite the presence of antiviral immunity, many patients develop chronic infections leading to cirrhosis, hepatocellular carcinoma, and liver failure that can require transplantation. We have previously described the presence of HLA‐A2–restricted, HCV NS3–reactive cytotoxic T lymphocytes (CTL) in the blood of HLA‐A2− liver transplantation patients that received an HLA‐A2+ liver allograft. These T cells are analogous to the “allospecific” T cells that have been described in hematopoietic stem cell transplantation patients. It has been speculated that allospecific T cells express high‐affinity T cell receptors (TCRs). To determine if our HCV‐reactive T cells expressed TCRs with relatively high affinity for antigen, we identified and cloned a TCR from an allospecific HLA‐A2–restricted, HCV:NS3:1406‐1415–reactive CD8+ T cell clone and expressed this HCV TCR in Jurkat cells. Tetramer binding to HCV TCR–transduced Jurkat cells required CD8 expression, whereas antigen recognition did not. In conclusion, based on the reactivity of the TCR‐transduced Jurkat cells, we have identified a TCR that transfers anti‐HCV reactivity to alternate effectors. These data suggest this high affinity HCV‐specific TCR might have potential new immunotherapic implications. (HEPATOLOGY 2006;43:973–981.)
Cancer Immunology, Immunotherapy | 2009
Simon Voelkl; Tamson V. Moore; Michael Rehli; Michael I. Nishimura; Andreas Mackensen; Karin Fischer
The immune attack against malignant tumors require the concerted action of CD8+ cytotoxic T lymphocytes (CTL) as well as CD4+ T helper cells. The contribution of T cell receptor (TCR) αβ+ CD4− CD8− double-negative (DN) T cells to anti-tumor immune responses is widely unknown. In previous studies, we have demonstrated that DN T cells with a broad TCR repertoire are present in humans in the peripheral blood and the lymph nodes of healthy individuals. Here, we characterize a human DN T cell clone (T4H2) recognizing an HLA-A2-restricted melanoma-associated antigenic gp100-peptide isolated from the peripheral blood of a melanoma patient. Antigen recognition by the T4H2 DN clone resulted in specific secretion of IFN-γ and TNF. Although lacking the CD8 molecule the gp100-specifc DN T cell clone was able to confer antigen-specific cytotoxicity against gp100-loaded target cells as well as HLA-A2+ gp100 expressing melanoma cells. The cytotoxic capacity was found to be perforin/granzymeB-dependent. Together, these data indicate that functionally active antigen-specific DN T cells recognizing MHC class I-restricted tumor-associated antigen (TAA) may contribute to anti-tumor immunity in vivo.
Journal of Immunology | 2008
Amanda G. Tesciuba; Rebecca A. Shilling; Monica D. Agarwal; Hozefa S. Bandukwala; Bryan S. Clay; Tamson V. Moore; Joel V. Weinstock; Andrew A. Welcher; Anne I. Sperling
The T cell costimulatory molecule ICOS regulates Th2 effector function in allergic airway disease. Recently, several studies with ICOS−/− mice have also demonstrated a role for ICOS in Th2 differentiation. To determine the effects of ICOS on the early immune response, we investigated augmenting ICOS costimulation in a Th2-mediated immune response to Schistosoma mansoni Ags. We found that augmenting ICOS costimulation with B7RP-1-Fc increased the accumulation of T and B cells in the draining lymph nodes postimmunization. Interestingly, the increased numbers were due in part to increased migration of undivided Ag-specific TCR transgenic T cells and surprisingly B cells, as well as non-TCR transgenic T cells. B7RP-1-Fc also increased the levels of the chemokines CCL21 and CXCL13 in the draining lymph node, suggesting ICOS costimulation contributes to migration by direct or indirect effects on dendritic cells, stromal cells and high endothelial venules. Further, the effects of B7RP-1-Fc were not dependent on immunization. Our data support a model in which ICOS costimulation augments the pool of lymphocytes in the draining lymph nodes, leading to an increase in the frequency of potentially reactive T and B cells.
Cancer Research | 2006
Gretchen E. Lyons; Tamson V. Moore; Natasha Brasic; Mingli Li; Jeffrey J. Roszkowski; Michael I. Nishimura
The CD8 coreceptor on T cells has two functions. Namely, CD8 acts to stabilize the binding of the T-cell receptor (TCR) to the peptide-MHC complex while localizing p56(lck) (lck) to the TCR/CD3 complex to facilitate early signaling events. Although both functions may be critical for efficient activation of a CTL, little is known about how the structural versus signaling roles of CD8, together with the relative strength of the TCR, influences T-cell function. We have addressed these issues by introducing full-length and truncated versions of the CD8alpha and CD8beta chains into CD8(-) Jurkat cell clones expressing cloned TCRs with known antigen specificity and relative affinities. Using a combination of antigen recognition and tetramer-binding assays, we find that the intracellular lck-binding domain of CD8 is critical for enhanced T-cell activation regardless of the relative strength of the TCR. In contrast, the extracellular domain of CD8 seems to be critical for TCRs with lower affinity but not those with higher affinity. Based on our results, we conclude that there are different requirements for CD8 to enhance T-cell function depending on the strength of its TCR.
Molecular Biology of the Cell | 2011
Purvi D. Mody; Kelly M. Blaine; E. J. Chen; A. D. Nelson; L. J. Sayles; Tamson V. Moore; Bryan S. Clay; Nickolai O. Dulin; Rebecca A. Shilling; Janis K. Burkhardt; Anne I. Sperling
CD43 interaction with ERM proteins regulates CD43 phosphorylation and T-cell migration. CD43 phosphorylation can also drive CD43 localization in T-cells independently of ERM association.
PLOS ONE | 2011
Tamson V. Moore; Bryan S. Clay; Caroline M. Ferreira; Jesse W. Williams; Magdalena Rogozinska; Rebecca A. Shilling; Amanda L. Marzo; Anne I. Sperling
Memory CD4 T cells play a vital role in protection against re-infection by pathogens as diverse as helminthes or influenza viruses. Inducible costimulator (ICOS) is highly expressed on memory CD4 T cells and has been shown to augment proliferation and survival of activated CD4 T cells. However, the role of ICOS costimulation on the development and maintenance of memory CD4 T cells remains controversial. Herein, we describe a significant defect in the number of effector memory (EM) phenotype cells in ICOS−/− and ICOSL−/− mice that becomes progressively more dramatic as the mice age. This decrease was not due to a defect in the homeostatic proliferation of EM phenotype CD4 T cells in ICOS−/− or ICOSL−/− mice. To determine whether ICOS regulated the development or survival of EM CD4 T cells, we utilized an adoptive transfer model. We found no defect in development of EM CD4 T cells, but long-term survival of ICOS−/− EM CD4 T cells was significantly compromised compared to wild-type cells. The defect in survival was specific to EM cells as the central memory (CM) ICOS−/− CD4 T cells persisted as well as wild type cells. To determine the physiological consequences of a specific defect in EM CD4 T cells, wild-type and ICOS−/− mice were infected with influenza virus. ICOS−/− mice developed significantly fewer influenza-specific EM CD4 T cells and were more susceptible to re-infection than wild-type mice. Collectively, our findings demonstrate a role for ICOS costimulation in the maintenance of EM but not CM CD4 T cells.
Cellular Immunology | 2009
Rebecca A. Shilling; Bryan S. Clay; Amanda G. Tesciuba; Elizabeth Berry; Tiffany Lu; Tamson V. Moore; Hozefa S. Bandukwala; Jiankun Tong; Joel V. Weinstock; Richard A. Flavell; Tom Horan; Steve K. Yoshinaga; Andrew A. Welcher; Anne I. Sperling
Previous work has shown ICOS can function independently of CD28, but whether either molecule can compensate for the other in vivo is not known. Since ICOS is a potent inducer of Th2 cytokines and linked to allergy and elevated serum IgE in humans, we hypothesized that augmenting ICOS costimulation in murine allergic airway disease may overcome CD28 deficiency. While ICOS was expressed on T cells from CD28(-/-) mice, Th2-mediated airway inflammation was not induced in CD28(-/-) mice by increased ICOS costimulation. Further, we determined if augmenting CD28 costimulation could compensate for ICOS deficiency. ICOS(-/-) mice had a defect in airway eosinophilia that was not overcome by augmenting CD28 costimulation. CD28 costimulation also did not fully compensate for ICOS for antibody responses, germinal center formation or the development of follicular B helper T cells. CD28 and ICOS play complementary non-overlapping roles in the development of Th2 immunity in vivo.
Cancer Immunology, Immunotherapy | 2009
Tamson V. Moore; Gretchen E. Lyons; Natasha Brasic; Jeffrey J. Roszkowski; Simon Voelkl; Andreas Mackensen; W. Martin Kast; I. Caroline Le Poole; Michael I. Nishimura
Effective immunotherapy using T cell receptor (TCR) gene-modified T cells requires an understanding of the relationship between TCR affinity and functional avidity of T cells. In this study, we evaluate the relative affinity of two TCRs isolated from HLA-A2-restricted, gp100-reactive T cell clones with extremely high functional avidity. Furthermore, one of these T cell clones, was CD4−CD8− indicating that antigen recognition by this clone was CD8 independent. However, when these TCRs were expressed in CD8− Jurkat cells, the resulting Jurkat cells recognized gp100:209–217 peptide loaded T2 cells and had high functional avidity, but could not recognize HLA-A2+ melanoma cells expressing gp100. Tumor cell recognition by Jurkat cells expressing these TCRs could not be induced by exogenously loading the tumor cells with the native gp100:209–217 peptide. These results indicate that functional avidity of a T cell does not necessarily correlate with TCR affinity and CD8-independent antigen recognition by a T cell does not always mean its TCR will transfer CD8-independence to other effector cells. The implications of these findings are that T cells can modulate their functional avidity independent of the affinity of their TCRs.
American Journal of Respiratory Cell and Molecular Biology | 2011
Tamson V. Moore; Bryan S. Clay; Alexander Histed; Rebecca A. Shilling; Anne I. Sperling
We and others reported that inducible costimulator-deficient (ICOS(-/-)) mice manifest a defect in Th2-mediated airway inflammation, which was attributed to reduced Th2 differentiation in the absence of ICOS signaling. Interestingly, the number of CD4 T cells present in the airways and lungs after sensitization and challenge is significantly reduced in ICOS(-/-) mice. We now show that this reduction is not attributable simply to a reduced proliferation of ICOS(-/-) cells, because significantly more ICOS(-/-) than wild-type activated CD4 T cells are present in the lymph nodes, suggesting that more ICOS(-/-) CD4 T cells than wild-type CD4 T cells migrated into the lymph nodes. Further investigation revealed that activated ICOS(-/-) CD4 T cells express higher concentrations of the lymph node homing receptors, CCR7 and CD62L, than do wild-type CD4 T cells, leading to a preferential return of ICOS(-/-) cells to the nondraining lymph nodes rather than the lungs. Blocking reentry into the lymph nodes after the initiation of Th2-mediated airway inflammation equalized the levels of CD4 and granulocyte infiltration in the lungs of wild-type and ICOS(-/-) mice. Our results demonstrate that in wild-type CD4 T cells, co-stimulation with ICOS promotes the down-regulation of CCR7 and CD62L after activation, leading to a reduced return of activated CD4 T cells to the lymph nodes and a more efficient entry into the lungs.