Tânia S. Morais
University of Lisbon
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tânia S. Morais.
Journal of Inorganic Biochemistry | 2009
M. Helena Garcia; Tânia S. Morais; Pedro Florindo; M. Fátima M. Piedade; Virtudes Moreno; Carlos J. Ciudad; Véronica Noé
Inhibition of the growth of LoVo human colon adenocarcinoma and MiaPaCa pancreatic cancer cell lines by two new organometallic ruthenium(II) complexes of general formula [Ru(eta(5)-C(5)H(5))(PP) L][CF(3)SO(3)], where PP is 1,2-bis(diphenylphosphino)ethane and L is 1,3,5-triazine (Tzn) 1 or PP is 2x triphenylphosphine and L is pyridazine (Pyd) 2 has been investigated. Crystal structures of compounds 1 and 2 were determined by X-ray diffraction studies. Atomic force microscopy (AFM) images suggest different mechanisms of interaction with the plasmid pBR322 DNA; while the mode of binding of compound 1 could be intercalation between base pairs of DNA, compound 2 might be involved in a covalent bond formation with N from the purine base.
Bioinorganic Chemistry and Applications | 2010
Virtudes Moreno; Julia Lorenzo; Francesc X. Avilés; M. Helena Garcia; João Ribeiro; Tânia S. Morais; Pedro Florindo; M. Paula Robalo
Four cationic ruthenium(II) complexes with the formula [Ru(η 5-C5H5)(PPh3)2]+, with L = 5-phenyl-1H-tetrazole (TzH) 1, imidazole (ImH) 2, benzo[1,2-b;4,3-b′] dithio-phen-2-carbonitrile (Bzt) 3, and [5-(2-thiophen-2-yl)-vinyl]-thiophene-2-carbonitrile] (Tvt) 4 were prepared and characterized in view to evaluate their potentialities as antitumor agents. Studies by Circular Dichroism indicated changes in the secondary structure of ct-DNA. Changes in the tertiary structure of pBR322 plasmid DNA were also observed in gel electrophoresis experiment and the images obtained by atomic force microscopy (AFM) suggest strong interaction with pBR322 plasmid DNA; the observed decreasing of the viscosity with time indicates that the complexes do not intercalate between DNA base pairs. Compounds 1, 2, and 3 showed much higher cytotoxicity than the cisplatin against human leukaemia cancer cells (HL-60 cells).
Journal of Inorganic Biochemistry | 2015
Mariana Fernández; Esteban Rodríguez Arce; Cynthia Sarniguet; Tânia S. Morais; Ana Isabel Tomaz; Claudio Olea Azar; Roberto Figueroa; J. Diego Maya; Andrea Medeiros; Marcelo A. Comini; M. Helena Garcia; Lucía Otero; Dinorah Gambino
Searching for new prospective antitrypanosomal agents, three novel Ru(II)-cyclopentadienyl compounds, [Ru(η(5)-C5H5)(PPh3)L], with HL=bioactive 5-nitrofuryl containing thiosemicarbazones were synthesized and characterized in the solid state and in solution. The compounds were evaluated in vitro on the blood circulating trypomastigote form of Trypanosoma cruzi (Dm28c strain), the infective form of Trypanosoma brucei brucei (strain 427) and on J774 murine macrophages and human-derived EA.hy926 endothelial cells. The compounds were active against both parasites with IC50 values in the micromolar or submicromolar range. Interestingly, they are much more active on T. cruzi than previously developed Ru(II) classical and organometallic compounds with the same bioactive ligands. The new compounds showed moderate to very good selectivity towards the parasites in respect to mammalian cells. The global results point at [RuCp(PPh3)L2] (L2=N-methyl derivative of 5-nitrofuryl containing thiosemicarbazone and Cp=cyclopentadienyl) as the most promising compound for further developments (IC50T. cruzi=0.41μM; IC50T. brucei brucei=3.5μM). Moreover, this compound shows excellent selectivity towards T. cruzi (SI>49) and good selectivity towards T. brucei brucei (SI>6). In order to get insight into the mechanism of antiparasitic action, the intracellular free radical production capacity of the new compounds was assessed by ESR. DMPO (5,5-dimethyl-1-pirroline-N-oxide) spin adducts related to the bioreduction of the complexes and to redox cycling processes were characterized. In addition, DNA competitive binding studies with ethidium bromide by fluorescence measurements showed that the compounds interact with this biomolecule.
Rapid Communications in Mass Spectrometry | 2012
Paulo J. Amorim Madeira; Tânia S. Morais; Tiago J.L. Silva; Pedro Florindo; M. Helena Garcia
RATIONALE The gas-phase behaviour of six Ru(II) cyclopentadienyl-derived complexes with N-coordinated ligands, compounds with antitumor activities against several cancer lines, was studied. This was performed with the intent of establishing fragmentation pathways and to determine the Ru-L(N) and Ru-L(P) ligand bond dissociation energies. Such knowledge can be an important tool for the postulation of the mechanisms of action of these anticancer drugs. METHODS Two types of instruments equipped with electrospray ionisation were used (ion trap and a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer). The dissociation energies were determined using energy-variable collision-induced dissociation measurements in the ion trap. The FTICR instrument was used to perform MS(n) experiments on one of the compounds and to obtain accurate mass measurements. Theoretical calculations were performed at the density functional theory (DFT) level using two different functionals (B3LYP and M06L) to estimate the dissociation energies of the complexes under study. RESULTS The influence of the L(N) on the bond dissociation energy (D) of RuCp compounds with different nitrogen ligands was studied. The lability order of L(N) was: imidazole<1-butylimidazole<5-phenyl-1H-tetrazole<1-benzylimidazole. Both the functionals used gave the following ligand lability order: imidazole<1-benzylimidazole<5-phenyl-1H-tetrazole<1-butylimidazole. It is clear that there is an inversion between 1-benzylimidazole and 1-butylimidazole for the experimental and theoretical lability orders. The M06L functional afforded values of D closer to the experimental values. The type of phosphane (L(P) ) influenced the dissociation energies, with values of D being higher for Ru-L(N) with 1-butylimidazole when the phosphane was 1,2-bis(diphenylphosphino)ethane. The Ru-L(P) bond dissociation energy for triphenylphosphane was independent of the type of complex. CONCLUSIONS The D values of Ru-L(N) and Ru-L(P) were determined for all six compounds and compared with the values calculated by the DFT method. For the imidazole-derived ligands the energy trend was rationalized in terms of the increasing extension of the σ-donation/π-backdonation effect. The bond dissociation energy of Ru-PPh(3) was independent of the fragmentations.
Journal of Inorganic Biochemistry | 2013
Tânia S. Morais; Filipa C. Santos; Leonor Côrte-Real; M. Helena Garcia
Ruthenium complexes hold a great potential in chemotherapy as an alternative to the classical platinum based drugs. The organometallic compounds studied in the present work were previously found to exhibit important anticancer activities. Here we have investigated the binding of three ruthenium compounds, namely [Ru(η(5)-C5H5)(PPh3)(bopy)][CF3SO3] 1, [Ru(η(5)-C5H5)(PPh3)(2-ap)][CF3SO3] 2, and [Ru(η(5)-C5H5)(PPh3)(isoquinpk)][CF3SO3] 3 (bopy=2-benzoylpyridine; 2-ap=2-acetylpyridine; isoquinpk=1-isoquinolinyl phenyl ketone) to fatty acid human serum albumin (HSA) and fatty acid-free human serum albumin (HSA(faf)) at physiological pH7.4. The influence of the substituent groups on the heteroaromatic (N,O) coordinated ligand was also studied by fluorescence spectroscopy to get information about this binding. The Stern-Volmer quenching constants (KSV) were calculated at 293, 298 and 310K, with the corresponding thermodynamic parameters ∆G, ∆H and ∆S as well. The fluorescence quenching method was used to determine the number of binding sites (n) and association constants (Ka) at the same temperatures. The binding site to HSA was confirmed by competitive studies of the ruthenium compounds with warfarin.
Future Medicinal Chemistry | 2016
Tânia S. Morais; Andreia Valente; Ana Isabel Tomaz; Fernanda Marques; Maria Helena Garcia
Research on the field of metal complexes for the treatment of cancer diseases has attracted increasing interest due to the urgency in finding more efficient and selective treatments. Owing to their wide structural diversity, organometallic complexes appear as potential alternatives to the design of new anticancer candidates. Herein, we review recent progress in our work toward the development of new drugs based on Ru(II)- and Fe(II)-cyclopentadienyl scaffolds. Their design and chemical properties are reviewed and correlated with their biological effects, in particular the key role that coligands play in the overall behavior of the complex.
Anti-cancer Agents in Medicinal Chemistry | 2016
Nuno Mendes; Francisco Tortosa; Andreia Valente; Fernanda Marques; A.P. Alves de Matos; Tânia S. Morais; Ana Isabel Tomaz; Fátima Gärtner; Maria Helena Garcia
BACKGROUND Ruthenium-based anti-cancer compounds are proposed as viable alternatives that might circumvent the disadvantages of platinum-based drugs, the only metallodrugs in clinical use for chemotherapy. Organometallic complexes in particular hold great potential as alternative therapeutic agents since their cytotoxicity involves different modes of action and present reduced toxicity profiles. OBJECTIVE During the last few years our research group has been reporting on a series of organometallic ruthenium(II)- cyclopentadienyl complexes with important cytotoxicity against several cancer cell lines, surpassing cisplatin in activity. We report herein preliminary in vivo studies with one representative compound of this family, with exceptional activity against several human cancer cell lines, including the glycolytic and highly metastatic MDAMB231 cell line used in this study. METHOD The anti-tumor activity of our compound was studied in vivo on N:NIH(S)II-nu/nu nude female mice bearing triple negative breast cancer (TNBC) orthotopic tumors. Administration of 2.5 mg/kg/day during ten days caused cell death mostly by necrosis (in vitro and in vivo), inducing tumor growth suppression of about 50% in treated animals when compared to controls. RESULTS The most remarkable result supporting the effectiveness and potential of this drug was the absence of metastases in the main organs of treated animals, while metastases were present in the lungs of all control mice, as revealed by histopathological and immunohistochemical analysis. CONCLUSION These in vivo studies suggest a dual effect for our drug not only by suppressing growth at the primary tumor tissue but also by inhibiting its metastatic behavior. Altogether, these results represent a benchmark and a solid starting point for future studies.
Journal of Inorganic Biochemistry | 2011
Virtudes Moreno; Mercè Font-Bardia; Teresa Calvet; Julia Lorenzo; Francesc Xavier Avilés; M. Helena Garcia; Tânia S. Morais; Andreia Valente; M. Paula Robalo
Journal of Inorganic Biochemistry | 2012
Ana Isabel Tomaz; Tamás Jakusch; Tânia S. Morais; Fernanda Marques; Rodrigo F.M. de Almeida; Filipa Mendes; Éva A. Enyedy; Isabel Santos; João Costa Pessoa; Tamás Kiss; M. Helena Garcia
Journal of Inorganic Biochemistry | 2012
Tânia S. Morais; Tiago J.L. Silva; Fernanda Marques; M. Paula Robalo; Fernando Avecilla; Paulo J. Amorim Madeira; Paulo J. Mendes; Isabel Santos; M. Helena Garcia