Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tanja Dominko is active.

Publication


Featured researches published by Tanja Dominko.


Nature | 1999

Ubiquitin tag for sperm mitochondria

Peter Sutovsky; Ricardo D. Moreno; João Ramalho-Santos; Tanja Dominko; C Simerly; Gerald Schatten

Like other mammals, humans inherit mitochondria from the mother only, even though the sperm contributes nearly one hundred mitochondria to the fertilized egg. In support of the idea that this strictly maternal inheritance of mitochondrial DNA arises from the selective destruction of sperm mitochondria, we show here that sperm mitochondria inside fertilized cow and monkey eggs are tagged by the recycling marker protein ubiquitin. This imprint is a death sentence that is written during spermatogenesis and executed after the sperm mitochondria encounter the eggs cytoplasmic destruction machinery.


Biology of Reproduction | 2000

Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos

Peter Sutovsky; Ricardo D. Moreno; João Ramalho-Santos; Tanja Dominko; Calvin Simerly; Gerald Schatten

Abstract The strictly maternal inheritance of mitochondria and mitochondrial DNA (mtDNA) in mammals is a developmental paradox promoted by an unknown mechanism responsible for the destruction of the sperm mitochondria shortly after fertilization. We have recently reported that the sperm mitochondria are ubiquitinated inside the oocyte cytoplasm and later subjected to proteolysis during preimplantation development (P. Sutovsky et al., Nature 1999; 402:371–372). Here, we provide further evidence for this process by showing that the proteolytic destruction of bull sperm mitochondria inside cow egg cytoplasm depends upon the activity of the universal proteolytic marker, ubiquitin, and the lysosomal apparatus of the egg. Binding of ubiquitin to sperm mitochondria was visualized by monospecific antibodies throughout pronuclear development and during the first embryonic divisions. The recognition and disposal of the ubiquitinated sperm mitochondria was prevented by the microinjection of anti-ubiquitin antibodies and by the treatment of the fertilized zygotes with lysosomotropic agent ammonium chloride. The postfecundal ubiquitination of sperm mitochondria and their destruction was not seen in the hybrid embryos created using cow eggs and sperm of wild cattle, gaur, thus supporting the hypothesis that sperm mitochondrion destruction is species specific. The initial ligation of ubiquitin molecules to sperm mitochondrial membrane proteins, one of which could be prohibitin, occurs during spermatogenesis. Even though the ubiquitin cross-reactivity was transiently lost from the sperm mitochondria during epididymal passage, likely as a result of disulfide bond cross-linking, it was restored and amplified after fertilization. Ubiquitination therefore may represent a mechanism for the elimination of paternal mitochondria during fertilization. Our data have important implications for anthropology, treatment of mitochondrial disorders, and for the new methods of assisted procreation, such as cloning, oocyte cytoplasm donation, and intracytoplasmic sperm injection.


Nature | 1999

Development: Ubiquitin tag for sperm mitochondria

Peter Sutovsky; Ricardo D. Moreno; João Ramalho-Santos; Tanja Dominko; Calvin Simerly; Gerald Schatten

Like other mammals, humans inherit mitochondria from the mother only, even though the sperm contributes nearly one hundred mitochondria to the fertilized egg. In support of the idea that this strictly maternal inheritance of mitochondrial DNA arises from the selective destruction of sperm mitochondria, we show here that sperm mitochondria inside fertilized cow and monkey eggs are tagged by the recycling marker protein ubiquitin. This imprint is a death sentence that is written during spermatogenesis and executed after the sperm mitochondria encounter the eggs cytoplasmic destruction machinery.


Nature Medicine | 1999

Unique checkpoints during the first cell cycle of fertilization after intracytoplasmic sperm injection in rhesus monkeys.

Laura Hewitson; Tanja Dominko; Diana Takahashi; Crista Martinovich; João Ramalho-Santos; Peter Sutovsky; John Fanton; Darla Jacob; Daymond Monteith; Martha Neuringer; David E. Battaglia; C Simerly; Gerald Schatten

Intracytoplasmic sperm injection has begun an era of considerable improvements in treating male infertility. Despite its success, questions remain about the dangers of transmitting traits responsible for male infertility, sex and autosomal chromosome aberrations and possible mental, physical and reproductive abnormalities. We report here the first births of rhesus monkeys produced by intracytoplasmic sperm injection at rates greater or equal to those reported by clinics. Essential assumptions about this process are flawed, as shown by results with the preclinical, nonhuman primate model and with clinically discarded specimens. Dynamic imaging demonstrated the variable position of the second meiotic spindle in relation to the first polar body; consequently, microinjection targeting is imprecise and potentially lethal. Intracytoplasmic sperm injection resulted in abnormal sperm decondensation, with the unusual retention of vesicle-associated membrane protein and the perinuclear theca, and the exclusion of the nuclear mitotic apparatus from the decondensing sperm nuclear apex. Male pronuclear remodeling in the injected oocytes was required before replication of either parental genome, indicating a unique G1-to-S transition checkpoint during zygotic interphase (the first cell cycle). These irregularities indicate that the intracytoplasmic sperm injection itself might lead to the observed increased chromosome anomalies.


Biology of Reproduction | 2000

Dynamic Imaging of the Metaphase II Spindle and Maternal Chromosomesin Bovine Oocytes: Implications for Enucleation Efficiency Verification, Avoidanceof Parthenogenesis, and Successful Embryogenesis

Tanja Dominko; Anthony W.S. Chan; C Simerly; C.M. Luetjens; Laura Hewitson; Crista Martinovich; Gerald Schatten

Abstract Manipulations of DNA and cellular structures are essential for the propagation of genetically identical animals by nuclear transfer. However, none of the steps have been optimized yet. This study reports a protocol that improves live dynamic imaging of the unfertilized bovine oocytes meiotic spindle microtubules with microinjected polymerization-competent X-rhodamine-tubulin and/or with vital long-wavelength excited DNA fluorochrome Sybr14 so that the maternal chromosomes can be verifiably removed to make enucleated eggs the starting point for cloning. Suitability of the new fluorochromes was compared to the conventional UV excitable Hoechst 33342 fluorochrome. Enucleation removed the smallest amount of cytoplasm (4–7%) and was 100% efficient only when performed under continuous fluorescence, i.e., longer fluorescence exposure. This was in part due to the finding that the second metaphase spindle is frequently displaced (60.7 ± 10%) from its previously assumed location subjacent to the first polar body. Removal of as much as 24 ± 3% of the oocyte cytoplasm underneath the polar body, in the absence of fluorochromes, often resulted in enucleation failure (36 ± 6%). When labeled oocytes were exposed to fluorescence and later activated, development to the blastocyst stage was lowest in the group labeled with Hoechst 33342 (3%), when compared to Sybr14 (19%), rhodamine-tubulin (23%), or unlabeled oocytes (37%). This suggests that longer wavelength fluorochromes can be employed for live visualization of metaphase spindle components, verification of their complete removal during enucleation, and avoidance of the confusion between artifactual parthenogenesis versus “cloning” success, without compromising the oocytes developmental potential after activation.


Biology of Reproduction | 2000

Live Rhesus Offspring by Artificial Insemination Using Fresh Sperm and Cryopreserved Sperm

L. Gabriel Sánchez-Partida; Gwendalyn M. Maginnis; Tanja Dominko; Crista Martinovich; Bryan McVay; John Fanton; Gerald Schatten

Abstract Artificial insemination (AI) and the cryopreservation of sperm with full reproductive capabilities are vital in the armamentarium of infertility clinics and reproductive laboratories. Notwithstanding the fantastic successes with AI and sperm cryopreservation in numerous species, including humans and cattle, these assisted reproductive technologies are less well developed in other species of importance for biomedical research, such as genetically modified mice and nonhuman primates. To that end, AI at high efficiency in the rhesus macaque (Macaca mullata) and the successful cryopreservation of rhesus sperm is presented here, as are the complexities of this primate model due to differences in reproductive tract anatomy and gamete physiology. Cryopreservation had no effect on the ability of sperm to fertilize oocytes in vitro or in vivo. Post-thaw progressive motility was not affected by cryopreservation; however, acrosome integrity was lower for cryopreserved (74.1%) than for fresh sperm (92.7%). Fertilization rates did not differ when fresh (58.1%; n = 32/55) or cryopreserved sperm (63.8%; n = 23/36) were used for in vitro fertilization. Similarly, pregnancy rates did not differ significantly after AI with fresh (57.1%; n = 8/14) or cryopreserved sperm (62.5%; n = 5/8). Seven live rhesus macaques were born following AI with fresh sperm, and three live offspring and two ongoing pregnancies were obtained when cryopreserved sperm were used. Cryopreservation of rhesus sperm as presented here would allow for the cost-effective storage of lineages of nonhuman primates with known genotypes. These results suggest that either national or international centers could be established as repositories to fill the global needs of sperm for nonhuman primate research and to provide the experimental foundation on which to explore and perfect the preservation of sperm from endangered nonhuman primates.


Molecular Reproduction and Development | 2000

TransgenICSI reviewed: foreign DNA transmission by intracytoplasmic sperm injection in rhesus monkey.

Anthony W.S. Chan; C. Marc Luetjens; Tanja Dominko; Jo o Ramalho-Santos; Calvin Simerly; Laura Hewitson; Gerald Schatten

This brief review considers the status of transgenesis by intracytoplasmic sperm injection (ICSI) with nonhuman primates. GFP expressing rhesus macaques embryos (mean = 34.6%; N = 81) were produced by ICSI using rhodamine‐tagged DNA encoding the green fluorescence protein (GFP) gene bound on sperm. Rhodamine signal was lost at the egg surface during in vitro fertilization (IVF) but could be traced by dynamic imaging during ICSI within the egg cytoplasm. GFP gene was expressed as early as the 4‐cell stage in ICSI embryos but not in embryos produced by in vitro fertilization (IVF). The percentage of GFP expressing blastomeres increased during embryogenesis to the blastocyst stage. Three offspring resulted from seven embryo transfers—a set of anatomically normal twins (a male and a female) stillborn 35 days premature, and a healthy male born at term. Although transgene was not detected in the offspring, the successful production of live primates using DNA bound sperm by ICSI suggests an alternative route to creating transgenic animals. It also raises concern regarding transmission of infectious material during ICSI. Mol. Reprod. Dev. 56:325–328, 2000.


Cloning | 1999

Optimization Strategies for Production of Mammalian Embryos by Nuclear Transfer

Tanja Dominko; João Ramalho-Santos; Anthony W.S. Chan; Ricardo D. Moreno; C. M. Luetjens; C Simerly; Laura Hewitson; Diana Takahashi; Crista Martinovich; J. M. White; Gerald Schatten

In order to optimize each of the individual steps in the nuclear transfer procedure, we report alternative protocols useful for producing recipient cytoplasts and for improving the success rate of nuclear transfer embryos in cattle, rhesus monkey, and hamster. Vital labeling of maternal chromatin/spindle is accomplished by long wavelength fluorochromes Sybr14 and rhodamine labeled tubulin allowing constant monitoring and verification during enucleation. The use of Chinese hamster ovary (CHO) donor cells expressing the viral influenza hemagglutinin fusion protein (HA-300a+), to adhere and induce fusion between the donor cells and enucleated cow, rhesus and hamster oocytes was examined. Cell surface hemagglutinin was activated with trypsin prior to nuclear transfer and fusion was induced by a short incubation of a newly created nuclear transfer couplet at pH 5.2 at room temperature. Donor cell cytoplasm was dynamically labeled with CMFDA, or further transfected with the green fluorescence protein (GFP) gene, so that fusion could be directly monitored using live imaging. High rates of fusion were observed between CHO donor cells and hamster (100%), rhesus (100%), and cow recipient cytoplasts (81.6%). Live imaging during fusion revealed rapid intermixing of cytoplasmic components between a recipient and a donor cell. Prelabeled donor cytoplasmic components were uniformly distributed throughout the recipient cytoplast, within minutes of fusion, while the newly introduced nucleus remained at the periphery. The fusion process did not induce activation as evidenced by unchanged distribution and density of cortical granules in the recipient cytoplasts. After artificial activation, the nuclear transfer embryos created in this manner were capable of completing several embryonic cell divisions. These procedures hold promise for enhancing the efficiency of nuclear transfer in mammals of importance for biomedical research, agriculture, biotechnology, and preserving unique, rare, and endangered species.


Nature | 1999

Ubiquitin tag for sperm mitochondria: Development

Peter Sutovsky; Ricardo D. Moreno; João Ramalho-Santos; Tanja Dominko; Calvin Simerly; Gerald Schatten

Like other mammals, humans inherit mitochondria from the mother only, even though the sperm contributes nearly one hundred mitochondria to the fertilized egg. In support of the idea that this strictly maternal inheritance of mitochondrial DNA arises from the selective destruction of sperm mitochondria, we show here that sperm mitochondria inside fertilized cow and monkey eggs are tagged by the recycling marker protein ubiquitin. This imprint is a death sentence that is written during spermatogenesis and executed after the sperm mitochondria encounter the eggs cytoplasmic destruction machinery.


Science | 2003

Molecular Correlates of Primate Nuclear Transfer Failures

Calvin Simerly; Tanja Dominko; Christopher S. Navara; Christopher J. Payne; Saverio Capuano; Gabriella G. Gosman; Kowit Yu Chong; Diana Takahashi; Crista Chace; Duane A. Compton; Laura Hewitson; Gerald Schatten

Collaboration


Dive into the Tanja Dominko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Calvin Simerly

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ricardo D. Moreno

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge