Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tanja Strive is active.

Publication


Featured researches published by Tanja Strive.


Virology | 2009

Identification and partial characterisation of a new Lagovirus in Australian wild rabbits.

Tanja Strive; J.D. Wright; A.J. Robinson

Rabbit Haemorrhagic Disease Virus (RHDV) is widely used in Australia to control feral rabbit populations. Before RHDV was released on the Australian continent in 1996, antibodies cross-reacting in RHDV specific ELISAs were found in Australian wild rabbits, leading to the hypothesis that a non-pathogenic calicivirus had been circulating in rabbit populations in Australia, potentially providing some level of cross-immunoprotection to RHDV infection. For the detection of this putative virus, a universal lagovirus PCR test was developed to screen a variety of different tissues of wild caught rabbits. We identified a new lagovirus in the intestinal tissues of three apparently healthy young wild rabbits. Quantitative Real Time PCR analysis revealed high concentrations of viral RNA in intestinal tissues and suggests a faecal-oral mode of transmission. Genome organisation and phylogenetic analysis following the sequencing of the entire viral genome revealed a new member of the genus Lagovirus within the family Caliciviridae.


PLOS Pathogens | 2011

Histo-Blood Group Antigens Act as Attachment Factors of Rabbit Hemorrhagic Disease Virus Infection in a Virus Strain-Dependent Manner

Kristina Nyström; Ghislaine Le Gall-Reculé; Joana Abrantes; Nathalie Ruvoën-Clouet; Béatrice Le Moullac-Vaidye; Ana M. Lopes; Pedro J. Esteves; Tanja Strive; Stéphane Marchandeau; Anne Dell; Stuart M. Haslam; Jacques Le Pendu

Rabbit Hemorrhagic disease virus (RHDV), a calicivirus of the Lagovirus genus, and responsible for rabbit hemorrhagic disease (RHD), kills rabbits between 48 to 72 hours post infection with mortality rates as high as 50–90%. Caliciviruses, including noroviruses and RHDV, have been shown to bind histo-blood group antigens (HBGA) and human non-secretor individuals lacking ABH antigens in epithelia have been found to be resistant to norovirus infection. RHDV virus-like particles have previously been shown to bind the H type 2 and A antigens. In this study we present a comprehensive assessment of the strain-specific binding patterns of different RHDV isolates to HBGAs. We characterized the HBGA expression in the duodenum of wild and domestic rabbits by mass spectrometry and relative quantification of A, B and H type 2 expression. A detailed binding analysis of a range of RHDV strains, to synthetic sugars and human red blood cells, as well as to rabbit duodenum, a likely gastrointestinal site for viral entrance was performed. Enzymatic cleavage of HBGA epitopes confirmed binding specificity. Binding was observed to blood group B, A and H type 2 epitopes in a strain-dependent manner with slight differences in specificity for A, B or H epitopes allowing RHDV strains to preferentially recognize different subgroups of animals. Strains related to the earliest described RHDV outbreak were not able to bind A, whereas all other genotypes have acquired A binding. In an experimental infection study, rabbits lacking the correct HBGA ligands were resistant to lethal RHDV infection at low challenge doses. Similarly, survivors of outbreaks in wild populations showed increased frequency of weak binding phenotypes, indicating selection for host resistance depending on the strain circulating in the population. HBGAs thus act as attachment factors facilitating infection, while their polymorphism of expression could contribute to generate genetic resistance to RHDV at the population level.


Journal of Virology | 2008

Nuclear Egress and Envelopment of Herpes Simplex Virus Capsids Analyzed with Dual-Color Fluorescence HSV1(17+)

Claus-Henning Nagel; Katinka Döhner; Mojgan Fathollahy; Tanja Strive; Eva Maria Borst; Martin Messerle; Beate Sodeik

ABSTRACT To analyze the assembly of herpes simplex virus type 1 (HSV1) by triple-label fluorescence microscopy, we generated a bacterial artificial chromosome (BAC) and inserted eukaryotic Cre recombinase, as well as β-galactosidase expression cassettes. When the BAC pHSV1(17+)blueLox was transfected back into eukaryotic cells, the Cre recombinase excised the BAC sequences, which had been flanked with loxP sites, from the viral genome, leading to HSV1(17+)blueLox. We then tagged the capsid protein VP26 and the envelope protein glycoprotein D (gD) with fluorescent protein domains to obtain HSV1(17+)blueLox-GFPVP26-gDRFP and -RFPVP26-gDGFP. All HSV1 BACs had variations in the a-sequences and lost the oriL but were fully infectious. The tagged proteins behaved as their corresponding wild type, and were incorporated into virions. Fluorescent gD first accumulated in cytoplasmic membranes but was later also detected in the endoplasmic reticulum and the plasma membrane. Initially, cytoplasmic capsids did not colocalize with viral glycoproteins, indicating that they were naked, cytosolic capsids. As the infection progressed, they were enveloped and colocalized with the viral membrane proteins. We then analyzed the subcellular distribution of capsids, envelope proteins, and nuclear pores during a synchronous infection. Although the nuclear pore network had changed in ca. 20% of the cells, an HSV1-induced reorganization of the nuclear pore architecture was not required for efficient nuclear egress of capsids. Our data are consistent with an HSV1 assembly model involving primary envelopment of nuclear capsids at the inner nuclear membrane and primary fusion to transfer capsids into the cytosol, followed by their secondary envelopment on cytoplasmic membranes.


Virology | 2010

The non-pathogenic Australian lagovirus RCV-A1 causes a prolonged infection and elicits partial cross-protection to rabbit haemorrhagic disease virus.

Tanja Strive; John Wright; John Kovaliski; G. Botti; Lorenzo Capucci

Two caliciviruses occur in Australian wild rabbits: rabbit calicivirus Australia 1 (RCV-A1) and rabbit haemorrhagic disease virus (RHDV), which is used in Australia as a biocontrol agent to reduce feral rabbit populations. There is concern that RCV-A1 acts as a natural vaccine and protects from lethal RHDV infection. To investigate this hypothesis, domestic rabbits were perorally infected with RCV-A1, monitored for 28 days and subsequently challenged with RHDV. We show that RCV-A1 causes a non-pathogenic infection and is shed in faeces for up to 7 days post-infection. RCV-A1 was detected in the bile 2 months post-inoculation, indicating a prolonged or possible persistent infection. All animals infected with RCV-A1 developed antibodies cross-reacting to RHDV. When challenged with RDHV, half of the rabbits (n=4) survived the infection. The results indicate that RCV-A1 is likely to persist in rabbit populations and can elicit partial cross-protection to lethal RHDV infection.


Emerging Infectious Diseases | 2015

Emerging Rabbit Hemorrhagic Disease Virus 2 (RHDVb), Australia

Robyn N. Hall; Jackie E. Mahar; Stephanie Haboury; Vicky Stevens; Edward C. Holmes; Tanja Strive

To the Editor: In May 2015 an isolate of the recently emerged variant of rabbit hemorrhagic disease virus (RHDV), RHDV2, was identified in an Australian wild rabbit (Oryctolagus cuniculus). RHDV2 (also called RHDVb) was first described in outbreaks in France in 2010 (1), then Italy and Spain in 2011 (2,3) and in Portugal from 2012 onwards (4). The virus is a genetically and antigenically distinct variant of RHDV that is able to partially overcome immunity to classical strains of RHDV (1,2). In contrast to case-fatality rates for other strains of RHDV, those for RHDV2 infection have been reported to be lower in mature rabbits (0%–75% in 1 study, compared with >90% for classic RHDV infection) (3) but higher (50% in 1 study) in rabbit kittens as young as 30 days of age, which are normally highly resistant to lethal RHDV infection (2). RHDV2 has been reported to spread effectively in domestic rabbits in Europe (3); it may be replacing existing strains of RHDV that infect wild rabbits on the Iberian Peninsula (5), possibly because of its ability to partially overcome immunity to these strains.


Journal of Virology | 2010

Evolution and Phylogeography of the Nonpathogenic Calicivirus RCV-A1 in Wild Rabbits in Australia

Marlene Jahnke; Edward C. Holmes; Peter J. Kerr; John Wright; Tanja Strive

ABSTRACT Despite its potential importance for the biological control of European rabbits, relatively little is known about the evolution and molecular epidemiology of rabbit calicivirus Australia 1 (RCV-A1). To address this issue we undertook an extensive evolutionary analysis of 36 RCV-A1 samples collected from wild rabbit populations in southeast Australia between 2007 and 2009. Based on phylogenetic analysis of the entire capsid sequence, six clades of RCV-A1 were defined, each exhibiting strong population subdivision. Strikingly, our estimates of the time to the most recent common ancestor of RCV-A1 coincide with the introduction of rabbits to Australia in the mid-19th century. Subsequent divergence events visible in the RCV-A1 phylogenies likely reflect key moments in the history of the European rabbit in Australia, most notably the bottlenecks in rabbit populations induced by the two viral biocontrol agents used on the Australian continent, myxoma virus and rabbit hemorrhagic disease virus (RHDV). RCV-A1 strains therefore exhibit strong phylogeographic separation and may constitute a useful tool to study recent host population dynamics and migration patterns, which in turn could be used to monitor rabbit control in Australia.


Journal of Virology | 2002

Proteolytic Processing of Human Cytomegalovirus Glycoprotein B Is Dispensable for Viral Growth in Culture

Tanja Strive; Eva Maria Borst; Martin Messerle; Klaus Radsak

ABSTRACT Glycoprotein B (gB) of human cytomegalovirus (HCMV), which is considered essential for the viral life cycle, is proteolytically processed during maturation. Since gB homologues of several other herpesviruses remain uncleaved, the relevance of this property of HCMV gB for viral infectivity is unclear. Here we report on the construction of a viral mutant in which the recognition site of gB for the cellular endoprotease furin was destroyed. Because mutagenesis of essential proteins may result in a lethal phenotype, a replication-deficient HCMV gB-null genome encoding enhanced green fluorescent protein was constructed, and complementation by mutant gBs was initially evaluated in transient-cotransfection assays. Cotransfection of plasmids expressing authentic gB or gB with a mutated cleavage site (gB-ΔFur) led to the formation of green fluorescent miniplaques which were considered to result from one cycle of phenotypic complementation of the gB-null genome. To verify these results, two recombinant HCMV genomes were constructed: HCMV-BAC-ΔMhdI, with a deletion of hydrophobic domain 1 of gB that appeared to be essential for viral growth in the cotransfection experiments, and HCMV-BACΔFur, in which the gB cleavage site was mutated by amino acid substitution. Consistent with the results of the cotransfection assays, only the ΔFur mutant replicated in human fibroblasts, showing growth kinetics comparable to that of wild-type virus. gB in mutant-infected cells was uncleaved, whereas glycosylation and transport to the cell surface were not impaired. Extracellular mutant virus contained exclusively uncleaved gB, indicating that proteolytic processing of gB is dispensable for viral replication in cell culture.


Molecular Ecology | 2014

Molecular epidemiology of Rabbit Haemorrhagic Disease Virus in Australia: when one became many

John Kovaliski; Ron Sinclair; Greg Mutze; David Peacock; Tanja Strive; Joana Abrantes; Pedro J. Esteves; Edward C. Holmes

Rabbit Haemorrhagic Disease Virus (RHDV) was introduced into Australia in 1995 as a biological control agent against the wild European rabbit (Oryctolagus cuniculus). We evaluated its evolution over a 16‐year period (1995–2011) by examining 50 isolates collected throughout Australia, as well as the original inoculum strains. Phylogenetic analysis of capsid protein VP60 sequences of the Australian isolates, compared with those sampled globally, revealed that they form a monophyletic group with the inoculum strains (CAPM V‐351 and RHDV351INOC). Strikingly, despite more than 3000 rereleases of RHDV351INOC since 1995, only a single viral lineage has sustained its transmission in the long‐term, indicative of a major competitive advantage. In addition, we find evidence for widespread viral gene flow, in which multiple lineages entered individual geographic locations, resulting in a marked turnover of viral lineages with time, as well as a continual increase in viral genetic diversity. The rate of RHDV evolution recorded in Australia −4.0 (3.3–4.7) × 10−3 nucleotide substitutions per site per year – was higher than previously observed in RHDV, and evidence for adaptive evolution was obtained at two VP60 residues. Finally, more intensive study of a single rabbit population (Turretfield) in South Australia provided no evidence for viral persistence between outbreaks, with genetic diversity instead generated by continual strain importation.


Virology | 2014

Increased virulence of rabbit haemorrhagic disease virus associated with genetic resistance in wild Australian rabbits (Oryctolagus cuniculus)

Peter Elsworth; Brian Cooke; John Kovaliski; Ronald Sinclair; Edward C. Holmes; Tanja Strive

The release of myxoma virus (MYXV) and Rabbit Haemorrhagic Disease Virus (RHDV) in Australia with the aim of controlling overabundant rabbits has provided a unique opportunity to study the initial spread and establishment of emerging pathogens, as well as their co-evolution with their mammalian hosts. In contrast to MYXV, which attenuated shortly after its introduction, rapid attenuation of RHDV has not been observed. By studying the change in virulence of recent field isolates at a single field site we show, for the first time, that RHDV virulence has increased through time, likely because of selection to overcome developing genetic resistance in Australian wild rabbits. High virulence also appears to be favoured as rabbit carcasses, rather than diseased animals, are the likely source of mechanical insect transmission. These findings not only help elucidate the co-evolutionary interaction between rabbits and RHDV, but reveal some of the key factors shaping virulence evolution.


Veterinary Microbiology | 2012

Serological assays to discriminate rabbit haemorrhagic disease virus from Australian non-pathogenic rabbit calicivirus.

June Liu; Peter J. Kerr; John Wright; Tanja Strive

Serological cross reactivity between the virulent rabbit haemorrhagic disease virus (RHDV) and the closely related but non-pathogenic rabbit calicivirus (RCV) makes it difficult to study the epidemiology of each virus and the interaction between them when both viruses co-circulate in wild rabbit populations. ELISA methods for the diagnosis of RHDV infection are well characterized, but no specific serological tests for RCV have been developed. Following the characterization of Australian non-pathogenic RCV-A1 strains, we used virus-like-particles (VLPs) and anti-RCV-A1 specific antibodies to establish a set of isotype ELISAs for detection of IgG, IgA and IgM in rabbit sera and secretory mucosal IgA in rectal swabs, and two competition ELISAs. These assays were used to discriminate between anti-RCV-A1 and anti-RHDV antibodies in rabbits. The isotype ELISAs were highly sensitive for detection of anti-RCV-A1 antibodies, but varying levels of cross reactivity from anti-RHDV antibodies occurred in the isotype ELISAs and one competition ELISA. However, the second competition ELISA specifically detected antibodies to RCV-A1 and showed no cross reactivity to anti-RHDV sera. These ELISAs provide important tools to monitor RCV-A1 infection when it occurs alone, and to discriminate between RHDV and RCV-A1 infection when they occur in the same rabbit population. When used in parallel with RHDV serology, they could be used to monitor the dynamics of these two closely related but pathogenically distinct viruses in wild and domestic rabbit populations.

Collaboration


Dive into the Tanja Strive's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robyn N. Hall

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter J. Kerr

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

John Wright

Cooperative Research Centre

View shared research outputs
Top Co-Authors

Avatar

John Kovaliski

Cooperative Research Centre

View shared research outputs
Top Co-Authors

Avatar

June Liu

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Nadya Urakova

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge