Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tanmoy Mondal is active.

Publication


Featured researches published by Tanmoy Mondal.


Molecular Cell | 2008

Kcnq1ot1 Antisense Noncoding RNA Mediates Lineage-Specific Transcriptional Silencing through Chromatin-Level Regulation

Radha Raman Pandey; Tanmoy Mondal; Faizaan Mohammad; Stefan Enroth; Lisa Redrup; Jan Komorowski; Takashi Nagano; Debora Mancini-DiNardo; Chandrasekhar Kanduri

Recent investigations have implicated long antisense noncoding RNAs in the epigenetic regulation of chromosomal domains. Here we show that Kcnq1ot1 is an RNA polymerase II-encoded, 91 kb-long, moderately stable nuclear transcript and that its stability is important for bidirectional silencing of genes in the Kcnq1 domain. Kcnq1ot1 interacts with chromatin and with the H3K9- and H3K27-specific histone methyltransferases G9a and the PRC2 complex in a lineage-specific manner. This interaction correlates with the presence of extended regions of chromatin enriched with H3K9me3 and H3K27me3 in the Kcnq1 domain in placenta, whereas fetal liver lacks both chromatin interactions and heterochromatin structures. In addition, the Kcnq1 domain is more often found in contact with the nucleolar compartment in placenta than in liver. Taken together, our data describe a mechanism whereby Kcnq1ot1 establishes lineage-specific transcriptional silencing patterns through recruitment of chromatin remodeling complexes and maintenance of these patterns through subsequent cell divisions occurs via targeting the associated regions to the perinucleolar compartment.


Development | 2010

Kcnq1ot1 noncoding RNA mediates transcriptional gene silencing by interacting with Dnmt1

Faizaan Mohammad; Tanmoy Mondal; Natalia Guseva; Gaurav Pandey; Chandrasekhar Kanduri

A long noncoding RNA, Kcnq1ot1, regulates the expression of both ubiquitously and tissue-specific imprinted genes within the Kcnq1 domain. However, the functional sequences of the Kcnq1ot1 RNA that mediate lineage-specific imprinting are unknown. Here, we have generated a knockout mouse with a deletion encompassing an 890-bp silencing domain (Δ890) downstream of the Kcnq1ot1 promoter. Maternal transmission of the Δ890 allele has no effect on imprinting, whereas paternal inheritance of the deletion leads to selective relaxation of the imprinting of ubiquitously imprinted genes to a variable extent in a tissue-specific manner. Interestingly, the deletion affects DNA methylation at somatically acquired differentially methylated regions (DMRs), but does not affect the histone modifications of the ubiquitously imprinted genes. Importantly, we found that Kcnq1ot1 recruits Dnmt1 to somatic DMRs by interacting with Dnmt1, and that this interaction was significantly reduced in the Δ890 mice. Thus, the ubiquitous and placental-specific imprinting of genes within the Kcnq1 domain might be mediated by distinct mechanisms, and Kcnq1ot1 RNA might mediate the silencing of ubiquitously imprinted genes by maintaining allele-specific methylation through its interactions with Dnmt1.


Genome Research | 2010

Characterization of the RNA content of chromatin

Tanmoy Mondal; Markus Rasmussen; Gaurav Pandey; Anders Isaksson; Chandrasekhar Kanduri

Noncoding RNA (ncRNA) constitutes a significant portion of the mammalian transcriptome. Emerging evidence suggests that it regulates gene expression in cis or trans by modulating the chromatin structure. To uncover the functional role of ncRNA in chromatin organization, we deep sequenced chromatin-associated RNAs (CARs) from human fibroblast (HF) cells. This resulted in the identification of 141 intronic regions and 74 intergenic regions harboring CARs. The intronic and intergenic CARs show significant conservation across 44 species of placental mammals. Functional characterization of one of the intergenic CARs, Intergenic10, revealed that it regulates gene expression of neighboring genes through modulating the chromatin structure in cis. Our data suggest that ncRNA is an integral component of chromatin and that it may regulate various biological functions through fine-tuning of the chromatin architecture.


Epigenetics | 2009

Epigenetics of imprinted long noncoding RNAs.

Faizaan Mohammad; Tanmoy Mondal; Chandrasekhar Kanduri

It is becoming increasingly evident that noncoding RNA (ncRNA) constitutes an important component of chromatin and that ncRNA has a critical role in organizing the chromatin architecture and epigenetic memory by acting as an interface with the chromatin modifying machinery. Xist is the only RNA that has been shown to regulate gene expression by modulating chromatin structure using a multilayered silencing pathway. Recent emerging evidence indicates that long ncRNAs such as Kcnq1ot1 and Air which map to the Kcnq1 and Igf2r imprinted gene clusters, respectively, mediate the transcriptional silencing of multiple genes by interacting with chromatin and recruiting the chromatin modifying machinery. Though there are some parallels in the mechanistic actions of Kcnq1ot1 and Air, they seem to differ greatly in the way they achieve the silencing of overlapping and nonoverlapping genes. By reviewing the latest available evidence, we propose that Kcnq1ot1 RNA itself seems to play a critical role in the bidirectional silencing of genes in the Kcnq1 domain, thus resembling the Xist RNA; whereas in the case of Air, the act of transcription plays a critical role in the silencing of the overlapping gene, whilst Air RNA itself mediates the silencing of nonoverlapping genes in a fashion similar to Kcnq1ot1 and Xist RNAs.


Molecular and Cellular Biology | 2008

Kcnq1ot1/Lit1 Noncoding RNA Mediates Transcriptional Silencing by Targeting to the Perinucleolar Region

Faizaan Mohammad; Radha Raman Pandey; Takashi Nagano; Lyubomira Chakalova; Tanmoy Mondal; Peter Fraser; Chandrasekhar Kanduri

ABSTRACT The Kcnq1ot1 antisense noncoding RNA has been implicated in long-range bidirectional silencing, but the underlying mechanisms remain enigmatic. Here we characterize a domain at the 5′ end of the Kcnq1ot1 RNA that carries out transcriptional silencing of linked genes using an episomal vector system. The bidirectional silencing property of Kcnq1ot1 maps to a highly conserved repeat motif within the silencing domain, which directs transcriptional silencing by interaction with chromatin, resulting in histone H3 lysine 9 trimethylation. Intriguingly, the silencing domain is also required to target the episomal vector to the perinucleolar compartment during mid-S phase. Collectively, our data unfold a novel mechanism by which an antisense RNA mediates transcriptional gene silencing of chromosomal domains by targeting them to distinct nuclear compartments known to be rich in heterochromatic machinery.


Development | 2012

Long noncoding RNA-mediated maintenance of DNA methylation and transcriptional gene silencing

Faizaan Mohammad; Gaurav Pandey; Tanmoy Mondal; Stefan Enroth; Lisa Redrup; Ulf Gyllensten; Chandrasekhar Kanduri

Establishment of silencing by noncoding RNAs (ncRNAs) via targeting of chromatin remodelers is relatively well investigated; however, their role in the maintenance of silencing is poorly understood. Here, we explored the functional role of the long ncRNA Kcnq1ot1 in the maintenance of transcriptional gene silencing in the one mega-base Kcnq1 imprinted domain in a transgenic mouse model. By conditionally deleting the Kcnq1ot1 ncRNA at different stages of mouse development, we suggest that Kcnq1ot1 ncRNA is required for the maintenance of the silencing of ubiquitously imprinted genes (UIGs) at all developmental stages. In addition, Kcnq1ot1 ncRNA is also involved in guiding and maintaining the CpG methylation at somatic differentially methylated regions flanking the UIGs, which is a hitherto unknown role for a long ncRNA. On the other hand, silencing of some of the placental-specific imprinted genes (PIGs) is maintained independently of Kcnq1ot1 ncRNA. Interestingly, the non-imprinted genes (NIGs) that escape RNA-mediated silencing are enriched with enhancer-specific modifications. Taken together, this study illustrates the gene-specific maintenance mechanisms operational at the Kcnq1 locus for tissue-specific transcriptional gene silencing and activation.


Developmental Biology | 2012

Antisense noncoding RNA promoter regulates the timing of de novo methylation of an imprinting control region

Natalia Guseva; Tanmoy Mondal; Chandrasekhar Kanduri

Epigenetic marks at cis acting imprinting control regions (ICRs) regulate parent of origin-specific expression of multiple genes in imprinted gene clusters. Epigenetic marks are acquired during gametogenesis and maintained faithfully thereafter. However, the mechanism by which differential epigenetic marks are established and maintained at ICRs is currently unclear. By using Kcnq1 ICR as a model system, we have investigated the functional role of genetic signatures in the acquisition and maintenance of epigenetic marks. Kcnq1 ICR is methylated on the maternal chromosome but remains unmethylated on the paternal chromosome. Here, we show that a paternal allele of Kcnq1 ICR lacking the Kcnq1ot1 promoter remains unmethylated during spermatogenesis; however, it becomes methylated specifically during pre-implantation development. Analysis of the chromatin structure at the paternal ICR in spermatogenic cells and in E13.5 embryonic tissues revealed that the ICRs of both wild type and mutant mice are enriched with H3K4me2 in spermatiogenic cells of the testicular compartment, but the mutant ICR lost H3K4me2 specifically in epididymal sperm and an increase in repressive marks was observed in embryonic tissues. Interestingly, we also detected a decrease in nucleosomal histone levels at the mutant ICR in comparison to the wild-type ICR in epididymal sperm. Taken together, these observations suggest that the Kcnq1ot1 promoter plays a critical role in establishing an epigenetic memory in the male germline by ensuring that the paternal allele remains in an unmethylated state during pre-implantation development.


Archive | 2013

Transcriptomic profiling of primary neuroblastomas revealsa high-risk tumor associated long noncoding RNA NBAT1, with functional roles in cell proliferation and neuronal differentiation.

Gaurav Kumar Pandey; Sanhita Mitra; Santhilal Subhash; Kankadeb Mishra; Susanne Fransson; Abiarchana Ganeshram; Tanmoy Mondal; Meena Kanduri; Jonas Abrahamsson; Susan Pfeifer; Erik G. Larsson; Tommy Martinsson; Per Kogner; Fredrik Hedborg; Chandrasekhar Kanduri


Archive | 2011

Maintenance of tissue-specific transcriptional silencing by a long noncoding RNA

Faizaan Mohammad; Gaurav Kumar Pandey; Tanmoy Mondal; Stefan Enroth; Ulf Gyllensten; Chandrasekhar Kanduri


Archive | 2010

Conditional deletion of Kcnq1ot1 RNA provides new insights into the noncoding RNA mediated gene silencing.

Faizaan Mohammad; Gaurav Kumar Pandey; Tanmoy Mondal; Chandrasekhar Kanduri

Collaboration


Dive into the Tanmoy Mondal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gaurav Pandey

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge