Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tanya Bardakjian is active.

Publication


Featured researches published by Tanya Bardakjian.


American Journal of Medical Genetics Part A | 2009

Novel SOX2 mutations and genotype-phenotype correlation in anophthalmia and microphthalmia.

Adele Schneider; Tanya Bardakjian; Linda M. Reis; Rebecca C. Tyler; Elena V. Semina

SOX2 represents a High Mobility Group domain containing transcription factor that is essential for normal development in vertebrates. Mutations in SOX2 are known to result in a spectrum of severe ocular phenotypes in humans, also typically associated with other systemic defects. Ocular phenotypes include anophthalmia/microphthalmia (A/M), optic nerve hypoplasia, ocular coloboma and other eye anomalies. We screened 51 unrelated individuals with A/M and identified SOX2 mutations in the coding region of the gene in 10 individuals. Seven of the identified mutations are novel alterations, while the remaining three individuals carry the previously reported recurrent 20‐nucleotide deletion in SOX2, c.70del20. Among the SOX2‐positive cases, seven patients had bilateral A/M and mutations resulting in premature termination of the normal protein sequence (7/38; 18% of all bilateral cases), one patient had bilateral A/M associated with a single amino acid insertion (1/38; 3% of bilateral cases), and the final two patients demonstrated unilateral A/M associated with missense mutations (2/13; 15% of all unilateral cases). These findings and review of previously reported cases suggest a potential genotype/phenotype correlation for SOX2 mutations with missense changes generally leading to less severe ocular defects. In addition, we report a new familial case of affected siblings with maternal mosaicism for the identified SOX2 mutation, which further underscores the importance of parental testing to provide accurate genetic counseling to families.


Clinical Genetics | 2011

OTX2 microphthalmia syndrome: four novel mutations and delineation of a phenotype

Kala F. Schilter; Adele Schneider; Tanya Bardakjian; Jean-François Soucy; Rebecca C. Tyler; Linda M. Reis; Elena V. Semina

Schilter KF, Schneider A, Bardakjian T, Soucy J‐F, Tyler RC, Reis LM, Semina EV. OTX2 microphthalmia syndrome: four novel mutations and delineation of a phenotype.


Human Genetics | 2011

BMP4 loss-of-function mutations in developmental eye disorders including SHORT syndrome

Linda M. Reis; Rebecca C. Tyler; Kala F. Schilter; Omar A. Abdul-Rahman; Jeffrey W. Innis; Beth A. Kozel; Adele Schneider; Tanya Bardakjian; Edward J. Lose; Donna M. Martin; Ulrich Broeckel; Elena V. Semina

BMP4 loss-of-function mutations and deletions have been shown to be associated with ocular, digital, and brain anomalies, but due to the paucity of these reports, the full phenotypic spectrum of human BMP4 mutations is not clear. We screened 133 patients with a variety of ocular disorders for BMP4 coding region mutations or genomic deletions. BMP4 deletions were detected in two patients: a patient affected with SHORT syndrome and a patient with anterior segment anomalies along with craniofacial dysmorphism and cognitive impairment. In addition to this, three intragenic BMP4 mutations were identified. A patient with anophthalmia, microphthalmia with sclerocornea, right-sided diaphragmatic hernia, and hydrocephalus was found to have a c.592C>T (p.R198X) nonsense mutation in BMP4. A frameshift mutation, c.171dupC (p.E58RfsX17), was identified in two half-siblings with anophthalmia/microphthalmia, discordant developmental delay/postaxial polydactyly, and poor growth as well as their unaffected mother; one affected sibling carried an additional BMP4 mutation in the second allele, c.362A>G (p.H121R). This is the first report indicating a role for BMP4 in SHORT syndrome, Axenfeld–Rieger malformation, growth delay, macrocephaly, and diaphragmatic hernia. These results significantly expand the number of reported loss-of-function mutations, further support the critical role of BMP4 in ocular development, and provide additional evidence of variable expression/non-penetrance of BMP4 mutations.


PLOS Genetics | 2011

Loss of the BMP Antagonist, SMOC-1, Causes Ophthalmo-Acromelic (Waardenburg Anophthalmia) Syndrome in Humans and Mice

Joe Rainger; Ellen van Beusekom; Jacqueline Ramsay; Lisa McKie; Lihadh Al-Gazali; Rosanna Pallotta; Anita Saponari; Peter Branney; Malcolm Fisher; Harris Morrison; Louise S. Bicknell; Philippe Gautier; Paul Perry; Kishan Sokhi; David Sexton; Tanya Bardakjian; Adele Schneider; Nursel Elcioglu; Ferda Ozkinay; Rainer Koenig; André Mégarbané; C. Nur Semerci; Ayesha Khan; Saemah Nuzhat Zafar; Raoul C. M. Hennekam; Sérgio B. Sousa; Lina Ramos; Livia Garavelli; Andrea Superti Furga; Anita Wischmeijer

Ophthalmo-acromelic syndrome (OAS), also known as Waardenburg Anophthalmia syndrome, is defined by the combination of eye malformations, most commonly bilateral anophthalmia, with post-axial oligosyndactyly. Homozygosity mapping and subsequent targeted mutation analysis of a locus on 14q24.2 identified homozygous mutations in SMOC1 (SPARC-related modular calcium binding 1) in eight unrelated families. Four of these mutations are nonsense, two frame-shift, and two missense. The missense mutations are both in the second Thyroglobulin Type-1 (Tg1) domain of the protein. The orthologous gene in the mouse, Smoc1, shows site- and stage-specific expression during eye, limb, craniofacial, and somite development. We also report a targeted pre-conditional gene-trap mutation of Smoc1 (Smoc1tm1a) that reduces mRNA to ∼10% of wild-type levels. This gene-trap results in highly penetrant hindlimb post-axial oligosyndactyly in homozygous mutant animals (Smoc1tm1a/tm1a). Eye malformations, most commonly coloboma, and cleft palate occur in a significant proportion of Smoc1tm1a/tm1a embryos and pups. Thus partial loss of Smoc-1 results in a convincing phenocopy of the human disease. SMOC-1 is one of the two mammalian paralogs of Drosophila Pentagone, an inhibitor of decapentaplegic. The orthologous gene in Xenopus laevis, Smoc-1, also functions as a Bone Morphogenic Protein (BMP) antagonist in early embryogenesis. Loss of BMP antagonism during mammalian development provides a plausible explanation for both the limb and eye phenotype in humans and mice.


European Journal of Human Genetics | 2009

BCOR analysis in patients with OFCD and Lenz microphthalmia syndromes, mental retardation with ocular anomalies, and cardiac laterality defects

Emma Hilton; Jennifer J. Johnston; Sandra Whalen; Nobuhiko Okamoto; Yoshikazu Hatsukawa; Juntaro Nishio; Hiroshi Kohara; Yoshiko Hirano; Seiji Mizuno; Chiharu Torii; Kenjiro Kosaki; Sylvie Manouvrier; Odile Boute; Rahat Perveen; Caroline Law; Anthony T. Moore; David Fitzpatrick; Johannes R. Lemke; Florence Fellmann; François-Guillaume Debray; Florence Dastot-Le-Moal; Marion Gerard; Josiane Martin; Pierre Bitoun; Michel Goossens; Alain Verloes; Albert Schinzel; Deborah Bartholdi; Tanya Bardakjian; Beverly N. Hay

Oculofaciocardiodental (OFCD) and Lenz microphthalmia syndromes form part of a spectrum of X-linked microphthalmia disorders characterized by ocular, dental, cardiac and skeletal anomalies and mental retardation. The two syndromes are allelic, caused by mutations in the BCL-6 corepressor gene (BCOR). To extend the series of phenotypes associated with pathogenic mutations in BCOR, we sequenced the BCOR gene in patients with (1) OFCD syndrome, (2) putative X-linked (‘Lenz’) microphthalmia syndrome, (3) isolated ocular defects and (4) laterality phenotypes. We present a new cohort of females with OFCD syndrome and null mutations in BCOR, supporting the hypothesis that BCOR is the sole molecular cause of this syndrome. We identify for the first time mosaic BCOR mutations in two females with OFCD syndrome and one apparently asymptomatic female. We present a female diagnosed with isolated ocular defects and identify minor features of OFCD syndrome, suggesting that OFCD syndrome may be mild and underdiagnosed. We have sequenced a cohort of males diagnosed with putative X-linked microphthalmia and found a mutation, p.P85L, in a single case, suggesting that BCOR mutations are not a major cause of X-linked microphthalmia in males. The absence of BCOR mutations in a panel of patients with non-specific laterality defects suggests that mutations in BCOR are not a major cause of isolated heart and laterality defects. Phenotypic analysis of OFCD and Lenz microphthalmia syndromes shows that in addition to the standard diagnostic criteria of congenital cataract, microphthalmia and radiculomegaly, patients should be examined for skeletal defects, particularly radioulnar synostosis, and cardiac/laterality defects.


Human Molecular Genetics | 2013

ALDH1A3 loss of function causes bilateral anophthalmia/microphthalmia and hypoplasia of the optic nerve and optic chiasm

Mani Yahyavi; Hana Abouzeid; Ghada Gawdat; Anne-Sophie de Preux; Tong Xiao; Tanya Bardakjian; Adele Schneider; Alex Choi; Eric Jorgenson; Herwig Baier; Mohamad El Sada; Daniel F. Schorderet; Anne Slavotinek

The major active retinoid, all-trans retinoic acid, has long been recognized as critical for the development of several organs, including the eye. Mutations in STRA6, the gene encoding the cellular receptor for vitamin A, in patients with Matthew-Wood syndrome and anophthalmia/microphthalmia (A/M), have previously demonstrated the importance of retinol metabolism in human eye disease. We used homozygosity mapping combined with next-generation sequencing to interrogate patients with anophthalmia and microphthalmia for new causative genes. We used whole-exome and whole-genome sequencing to study a family with two affected brothers with bilateral A/M and a simplex case with bilateral anophthalmia and hypoplasia of the optic nerve and optic chiasm. Analysis of novel sequence variants revealed homozygosity for two nonsense mutations in ALDH1A3, c.568A>G, predicting p.Lys190*, in the familial cases, and c.1165A>T, predicting p.Lys389*, in the simplex case. Both mutations predict nonsense-mediated decay and complete loss of function. We performed antisense morpholino (MO) studies in Danio rerio to characterize the developmental effects of loss of Aldh1a3 function. MO-injected larvae showed a significant reduction in eye size, and aberrant axonal projections to the tectum were noted. We conclude that ALDH1A3 loss of function causes anophthalmia and aberrant eye development in humans and in animal model systems.


American Journal of Medical Genetics Part A | 2010

FOXE3 plays a significant role in autosomal recessive microphthalmia

Linda M. Reis; Rebecca C. Tyler; Adele Schneider; Tanya Bardakjian; Joan M. Stoler; Serge Melancon; Elena V. Semina

FOXE3 forkhead transcription factor is essential to lens development in vertebrates. The eyes of Foxe3/foxe3‐deficient mice and zebrafish fail to develop normally. In humans, autosomal dominant and recessive mutations in FOXE3 have been associated with variable phenotypes including anterior segment anomalies, cataract, and microphthalmia. We undertook sequencing of FOXE3 in 116 probands with a spectrum of ocular defects ranging from anterior segment dysgenesis and cataract to anophthalmia/microphthalmia. Recessive mutations in FOXE3 were found in four of 26 probands affected with bilateral microphthalmia (15% of all bilateral microphthalmia and 100% of consanguineous families with this phenotype). FOXE3‐positive microphthalmia was accompanied by aphakia and/or corneal defects; no other associated systemic anomalies were observed in FOXE3‐positive families. The previously reported c.720C > A (p.C240X) nonsense mutation was identified in two additional families in our sample and therefore appears to be recurrent, now reported in three independent microphthalmia families of varied ethnic backgrounds. Several missense variants were identified at varying frequencies in patient and control groups with some apparently being race‐specific, which underscores the importance of utilizing race/ethnicity‐matched control populations in evaluating the relevance of genetic screening results. In conclusion, FOXE3 mutations represent an important cause of nonsyndromic autosomal recessive bilateral microphthalmia.


Current Opinion in Ophthalmology | 2011

The genetics of anophthalmia and microphthalmia

Tanya Bardakjian; Adele Schneider

Purpose of review To summarize recent breakthroughs regarding the genes known to play a role in normal ocular development in humans and to elucidate the role mutations in these genes play in anophthalmia and microphthalmia. Recent findings The main themes discussed within this article are the various documented genetic advances in identifying the various causes of anophthalmia and microphthalmia. In addition, the complex interplay of these genes during critical embryonic development will be addressed. Summary The recent identification of many eye development genes has changed the ability to identify a cause of anophthalmia and microphthalmia in many individuals. Syndrome identification and the availability of genetic testing underscores the desirability of evaluation by a geneticist for all individuals with anophthalmia and microphthalmia in order to provide appropriate management, long-term guidance, and genetic counseling.


Human Mutation | 2012

VAX1 Mutation Associated with Microphthalmia, Corpus Callosum Agenesis, and Orofacial Clefting: The First Description of a VAX1 Phenotype in Humans

Anne Slavotinek; Ryan Chao; Tomas Vacik; Mani Yahyavi; Hana Abouzeid; Tanya Bardakjian; Adele Schneider; Gary M. Shaw; Elliott H. Sherr; Greg Lemke; Mohammed M. Youssef; Daniel F. Schorderet

Vax1 and Vax2 have been implicated in eye development and the closure of the choroid fissure in mice and zebrafish. We sequenced the coding exons of VAX1 and VAX2 in 70 patients with anophthalmia/microphthalmia (A/M). In VAX1, we observed homozygosity for two successive nucleotide substitutions c.453G>A and c.454C>A, predicting p.Arg152Ser, in a proband of Egyptian origin with microphthalmia, small optic nerves, cleft lip/palate, and corpus callosum agenesis. This mutation affects an invariant residue in the homeodomain of VAX1 and was absent from 96 Egyptian controls. It is likely that the mutation results in a loss of function, as the mutation results in a phenotype similar to the Vax1 homozygous null mouse. We did not identify any mutations in VAX2. This is the first description of a phenotype associated with a VAX1 mutation in humans and establishes VAX1 as a new causative gene for A/M. Hum Mutat 33:364–368, 2012.


BMC Genetics | 2010

Genetic defects of GDF6 in the zebrafish out of sight mutant and in human eye developmental anomalies.

Anneke I den Hollander; Janisha Biyanwila; Peter Kovach; Tanya Bardakjian; Elias I. Traboulsi; Nicola Ragge; Adele Schneider; Jarema Malicki

BackgroundThe size of the vertebrate eye and the retina is likely to be controlled at several stages of embryogenesis by mechanisms that affect cell cycle length as well as cell survival. A mutation in the zebrafish out of sight (out) locus results in a particularly severe reduction of eye size. The goal of this study is to characterize the outm233mutant, and to determine whether mutations in the out gene cause microphthalmia in humans.ResultsIn this study, we show that the severe reduction of eye size in the outm233mutant is caused by a mutation in the zebrafish gdf6a gene. Despite the small eye size, the overall retinal architecture appears largely intact, and immunohistochemical studies confirm that all major cell types are present in outm233retinae. Subtle cell fate and patterning changes are present predominantly in amacrine interneurons. Acridine orange and TUNEL staining reveal that the levels of apoptosis are abnormally high in outm233mutant eyes during early neurogenesis. Mutation analysis of the GDF6 gene in 200 patients with microphthalmia revealed amino acid substitutions in four of them. In two patients additional skeletal defects were observed.ConclusionsThis study confirms the essential role of GDF6 in the regulation of vertebrate eye size. The reduced eye size in the zebrafish outm233mutant is likely to be caused by a transient wave of apoptosis at the onset of neurogenesis. Amino acid substitutions in GDF6 were detected in 4 (2%) of 200 patients with microphthalmia. In two patients different skeletal defects were also observed, suggesting pleitrophic effects of GDF6 variants. Parents carrying these variants are asymptomatic, suggesting that GDF6 sequence alterations are likely to contribute to the phenotype, but are not the sole cause of the disease. Variable expressivity and penetrance suggest a complex non-Mendelian inheritance pattern where other genetic factors may influence the outcome of the phenotype.

Collaboration


Dive into the Tanya Bardakjian's collaboration.

Top Co-Authors

Avatar

Adele Schneider

Albert Einstein Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena V. Semina

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Linda M. Reis

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Rebecca C. Tyler

Children's Hospital of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Pui-Yan Kwok

University of California

View shared research outputs
Top Co-Authors

Avatar

Eunice Wan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Lao

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge