Tanya J. Mason
University of Wollongong
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tanya J. Mason.
Plant Ecology | 2011
Kris French; Tanya J. Mason; Natalie Sullivan
Recruitment limitation may limit the ability of sites to regenerate after disturbances such as weed invasion and weed management. We investigated seed bank constraints and dispersal limitation in coastal dune communities on the east coast of Australia. The ability of sites to regenerate naturally following weed removal was assessed in coastal dune communities invaded by the invasive alien, bitou bush (Chrysanthemoidesmonilifera subsp. rotundata). To investigate recruitment limitation, seed banks and vegetation of invaded, native, intensively managed (selective application of herbicide and some re-vegetation) and extensively managed (large-scale, non-selective herbicide application) sites were compared. We investigated the dispersal mechanisms of species in the seed bank and vegetation to determine if communities might be dispersal-limited, i.e. contain significant numbers of species with only short-distance dispersal capabilities. Species richness and composition of soil seed banks differed from the vegetation in foredunes and hinddunes. Invasion depleted seed banks further. About half of the species had short-distance dispersal mechanisms indicating the potential for dispersal limitation. Secondary weed invasion following management was evident although alien species occurred in both seed banks and vegetation. Our results indicated that coastal dune communities suffer recruitment limitation. Native, managed and invaded dune communities appear to be both seed bank and dispersal-limited although management and invasion exacerbates recruitment. Regeneration of coastal dune communities will require active reintroduction of species, particularly those with short-distance dispersal mechanisms.
Oecologia | 2013
Tanya J. Mason; Kris French; Dianne F. Jolley
Different arrival order scenarios of native functional groups to a site may influence both resource use during development and final community structure. Arrival order may then indirectly influence community resistance to invasion. We present a mesocosm experiment of constructed coastal dune communities that monitored biotic and abiotic responses to different arrival orders of native functional groups. Constructed communities were compared with unplanted mesocosms. We then simulated a single invasion event by bitou (Chrysanthemoides monilifera ssp. rotundata), a dominant exotic shrub of coastal communities. We evaluated the hypothesis that plantings with simultaneous representation of grass, herb and shrub functional groups at the beginning of the experiment would more completely sequester resources and limit invasion than staggered plantings. Staggered plantings in turn would offer greater resource use and invasion resistance than unplanted mesocosms. Contrary to our expectations, there were few effects of arrival order on abiotic variables for the duration of the experiment and arrival order was unimportant in final community invasibility. All planted mesocosms supported significantly more invader germinants and significantly less invader abundance than unplanted mesocosms. Native functional group plantings may have a nurse effect during the invader germination and establishment phase and a competitive function during the invader juvenile and adult phase. Arrival order per se did not affect resource use and community invasibility in our mesocosm experiment. While grass, herb and shrub functional group plantings will not prevent invasion success in restored communities, they may limit final invader biomass.
PLOS ONE | 2017
Tanya J. Mason; Kristine French; Dianne F. Jolley
Biotic effects are often used to explain community structure and invasion resistance. We evaluated the contribution of functional richness and identity to invasion resistance and abiotic resource availability using a mesocosm experiment. We predicted that higher functional richness would confer greater invasion resistance through greater resource sequestration. We also predicted that niche pre-emption and invasion resistance would be higher in communities which included functional groups similar to the invader than communities where all functional groups were distinct from the invader. We constructed communities of different functional richness and identity but maintained constant species richness and numbers of individuals in the resident community. The constructed communities represented potential fore dune conditions following invader control activities along the Australian east coast. We then simulated an invasion event by bitou (Chrysanthemoides monilifera ssp. rotundata DC. Norl.), a South African shrub invader. We used the same bitou propagule pressure across all treatments and monitored invasion success and resource availability for 13 months. Contrary to our predictions, we found that functional richness did not mediate the number of bitou individuals or bitou cover and functional identity had little effect on invasion success: there was a trend for the grass single functional group treatment to supress bitou individuals, but this trend was obscured when grasses were in multi functional group treatments. We found that all constructed communities facilitated bitou establishment and suppressed bitou cover relative to unplanted mesocosms. Abiotic resource use was either similar among planted communities, or differences did not relate to invasion success (with the exception of light availability). We attribute invasion resistance to bulk plant biomass across planted treatments rather than their functional group arrangement.
Biological Conservation | 2007
Tanya J. Mason; Kris French
Biological Conservation | 2007
Tanya J. Mason; Kris French; Kenneth G. Russell
Diversity and Distributions | 2008
Tanya J. Mason; Kris French
Journal of Applied Ecology | 2009
Tanya J. Mason; Kris French; W. M. Lonsdale
Journal of Vegetation Science | 2012
Tanya J. Mason; Kristine French; Kenneth G. Russell
Plant protection quarterly | 2008
Kristine French; Emilie-Jane Ens; Carl R. Gosper; Elizabeth A. Lindsay; Tanya J. Mason; Ben Owers; Natalie Sullivan
Pacific Conservation Biology | 2005
Kristine French; W.M. Lonsdale; Tanya J. Mason