Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tanya Tolmachova is active.

Publication


Featured researches published by Tanya Tolmachova.


The Lancet | 2014

Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial

Robert E. MacLaren; Markus Groppe; Alun R. Barnard; Charles L. Cottriall; Tanya Tolmachova; Len Seymour; K. Reed Clark; Matthew J. During; Frans P.M. Cremers; Graeme C.M. Black; Andrew J. Lotery; Susan M. Downes; Andrew R. Webster; Miguel C. Seabra

Summary Background Choroideremia is an X-linked recessive disease that leads to blindness due to mutations in the CHM gene, which encodes the Rab escort protein 1 (REP1). We assessed the effects of retinal gene therapy with an adeno-associated viral (AAV) vector encoding REP1 (AAV.REP1) in patients with this disease. Methods In a multicentre clinical trial, six male patients (aged 35–63 years) with choroideremia were administered AAV.REP1 (0·6–1·0×1010 genome particles, subfoveal injection). Visual function tests included best corrected visual acuity, microperimetry, and retinal sensitivity tests for comparison of baseline values with 6 months after surgery. This study is registered with ClinicalTrials.gov, number NCT01461213. Findings Despite undergoing retinal detachment, which normally reduces vision, two patients with advanced choroideremia who had low baseline best corrected visual acuity gained 21 letters and 11 letters (more than two and four lines of vision). Four other patients with near normal best corrected visual acuity at baseline recovered to within one to three letters. Mean gain in visual acuity overall was 3·8 letters (SE 4·1). Maximal sensitivity measured with dark-adapted microperimetry increased in the treated eyes from 23·0 dB (SE 1·1) at baseline to 25·3 dB (1·3) after treatment (increase 2·3 dB [95% CI 0·8–3·8]). In all patients, over the 6 months, the increase in retinal sensitivity in the treated eyes (mean 1·7 [SE 1·0]) was correlated with the vector dose administered per mm2 of surviving retina (r=0·82, p=0·04). By contrast, small non-significant reductions (p>0·05) were noted in the control eyes in both maximal sensitivity (–0·8 dB [1·5]) and mean sensitivity (–1·6 dB [0·9]). One patient in whom the vector was not administered to the fovea re-established variable eccentric fixation that included the ectopic island of surviving retinal pigment epithelium that had been exposed to vector. Interpretation The initial results of this retinal gene therapy trial are consistent with improved rod and cone function that overcome any negative effects of retinal detachment. These findings lend support to further assessment of gene therapy in the treatment of choroideremia and other diseases, such as age-related macular degeneration, for which intervention should ideally be applied before the onset of retinal thinning. Funding UK Department of Health and Wellcome Trust.


Immunity | 2014

MicroRNA-Containing T-Regulatory-Cell-Derived Exosomes Suppress Pathogenic T Helper 1 Cells

Isobel S. Okoye; Stephanie M. Coomes; Victoria S. Pelly; Stephanie Czieso; Venizelos Papayannopoulos; Tanya Tolmachova; Miguel C. Seabra; Mark S. Wilson

Summary Foxp3+ T regulatory (Treg) cells prevent inflammatory disease but the mechanistic basis of suppression is not understood completely. Gene silencing by RNA interference can act in a cell-autonomous and non-cell-autonomous manner, providing mechanisms of intercellular regulation. Here, we demonstrate that non-cell-autonomous gene silencing, mediated by miRNA-containing exosomes, is a mechanism employed by Treg cells to suppress T-cell-mediated disease. Treg cells transferred microRNAs (miRNA) to various immune cells, including T helper 1 (Th1) cells, suppressing Th1 cell proliferation and cytokine secretion. Use of Dicer-deficient or Rab27a and Rab27b double-deficient Treg cells to disrupt miRNA biogenesis or the exosomal pathway, respectively, established a requirement for miRNAs and exosomes for Treg-cell-mediated suppression. Transcriptional analysis and miRNA inhibitor studies showed that exosome-mediated transfer of Let-7d from Treg cell to Th1 cells contributed to suppression and prevention of systemic disease. These studies reveal a mechanism of Treg-cell-mediated suppression mediated by miRNA-containing exosomes.


Nature Communications | 2015

Exosome-delivered microRNAs modulate the inflammatory response to endotoxin.

Margaret Alexander; Ruozhen Hu; Marah C. Runtsch; Dominique A. Kagele; Timothy L. Mosbruger; Tanya Tolmachova; Miguel C. Seabra; June L. Round; Diane M. Ward; Ryan M. O'Connell

MicroRNAs regulate gene expression posttranscriptionally and function within the cells in which they are transcribed. However, recent evidence suggests that microRNAs can be transferred between cells and mediate target gene repression. We find that endogenous miR-155 and miR-146a, two critical microRNAs that regulate inflammation, are released from dendritic cells within exosomes and are subsequently taken up by recipient dendritic cells. Following uptake, exogenous microRNAs mediate target gene repression and can reprogramme the cellular response to endotoxin, where exosome-delivered miR-155 enhances while miR-146a reduces inflammatory gene expression. We also find that miR-155 and miR-146a are present in exosomes and pass between immune cells in vivo, as well as demonstrate that exosomal miR-146a inhibits while miR-155 promotes endotoxin-induced inflammation in mice. Together, our findings provide strong evidence that endogenous microRNAs undergo a functional transfer between immune cells and constitute a mechanism of regulating the inflammatory response.


Nature Cell Biology | 2007

Rab27a regulates phagosomal pH and NADPH oxidase recruitment to dendritic cell phagosomes

Carolina Jancic; Ariel Savina; Christina Wasmeier; Tanya Tolmachova; Jamel El-Benna; Pham My-Chan Dang; Steve Pascolo; Maire-Anne Gougerot-Pocidalo; Graça Raposo; Miguel C. Seabra; Sebastian Amigorena

To prevent excessive degradation of internalized antigens, which could destroy the peptides recognized by T lymphocytes, dendritic cells have developed several strategies that limit proteolytic activity in phagosomes. The recruitment of the NADPH oxidase NOX2 prevents acidification of phagosomes, limiting antigen degradation. Here, we show that dendritic cells derived from Rab27a-deficient ashen mice show increased phagosome acidification and antigen degradation, causing a defect in antigen cross-presentation. Enhanced acidification results from a delay in the recruitment to phagosomes of a subset of lysosome-related organelles containing the membrane subunits of NOX2. The Rab27a-dependent recruitment of these “inhibitory lysosome-related organelles” to phagosomes continuously limits acidification and degradation of ingested particles in dendritic cells, thus promoting antigen cross-presentation.


Journal of Clinical Investigation | 2002

Functional redundancy of Rab27 proteins and the pathogenesis of Griscelli syndrome

Duarte C. Barral; José S. Ramalho; Ross Anders; Alistair N. Hume; Holly J. Knapton; Tanya Tolmachova; Lucy M. Collinson; David Goulding; Kalwant S. Authi; Miguel C. Seabra

Griscelli syndrome (GS) patients and the corresponding mouse model ashen exhibit defects mainly in two types of lysosome-related organelles, melanosomes in melanocytes and lytic granules in CTLs. This disease is caused by loss-of-function mutations in RAB27A, which encodes 1 of the 60 known Rab GTPases, critical regulators of vesicular transport. Here we present evidence that Rab27a function can be compensated by a closely related protein, Rab27b. Rab27b is expressed in platelets and other tissues but not in melanocytes or CTLs. Morphological and functional tests in platelets derived from ashen mice are all within normal limits. Both Rab27a and Rab27b are found associated with the limiting membrane of platelet-dense granules and to a lesser degree with alpha-granules. Ubiquitous transgenic expression of Rab27a or Rab27b rescues ashen coat color, and melanocytes derived from transgenic mice exhibit widespread peripheral distribution of melanosomes instead of the perinuclear clumping observed in ashen melanocytes. Finally, transient expression in ashen melanocytes of Rab27a or Rab27b, but not other Rabs, restores peripheral distribution of melanosomes. Our data suggest that Rab27b is functionally redundant with Rab27a and that the pathogenesis of GS is determined by the relative expression of Rab27a and Rab27b in specialized cell types.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Rab27b regulates number and secretion of platelet dense granules

Tanya Tolmachova; Magnus Åbrink; Clare E. Futter; Kalwant S. Authi; Miguel C. Seabra

The Rab27 GTPase subfamily consists of two closely related homologs, Rab27a and Rab27b. Rab27a has been shown previously to regulate organelle movement and regulated exocytosis in a wide variety of secretory cells. However, the role of the more restrictedly expressed Rab27b remains unclear. Here we describe the creation of Rab27b knockout (KO) strain that was subsequently crossed with the naturally occurring Rab27a KO line, ashen, to produce double KO (Rab27aash/ash Rab27b−/−) mice. Rab27b KO (and double KO) exhibit significant hemorrhagic disease in contrast to ashen mice. In vitro assays demonstrated impaired aggregation with collagen and U46619 and reduced secretion of dense granules in both Rab27b and double KO strains. Additionally, we detected a 50% reduction in the number of dense granules per platelet and diminished platelet serotonin content, possibly due to a dense granule packaging defect into proplatelets during megakaryocyte maturation. The presence of Rab27a partially compensated for the secretory defect but not the reduced granule number. The morphology and function of platelet α-granules were unaffected. Our data suggest that Rab27b is a key regulator of dense granule secretion in platelets and thus a candidate gene for δ-storage pool deficiency in humans.


Traffic | 2007

Rab27b Regulates Mast Cell Granule Dynamics and Secretion

Kouichi Mizuno; Tanya Tolmachova; Dmitry S. Ushakov; Maryse Romao; Magnus Åbrink; Michael A. Ferenczi; Gracxa Raposo; Miguel C. Seabra

The Rab GTPase family regulates membrane domain organization and vesicular transport pathways. Recent studies indicate that one member of the family, Rab27a, regulates transport of lysosome‐related organelles in specialized cells, such as melanosomes and lytic granules. Very little is known about the related isoform, Rab27b. Here we used genetically modified mice to study the involvement of the Rab27 proteins in mast cells, which play key roles in allergic responses. Both Rab27a and Rab27b isoforms are expressed in bone marrow‐derived mast cells (BMMC) and localize to secretory granules. Nevertheless, secretory defects as measured by β‐hexosaminidase release in vitroand passive cutaneous anaphylaxis in vivowere found only in Rab27b and double Rab27 knockout (KO) mice. Immunofluorescence studies suggest that a subset of Rab27b and double Rab27‐deficient BMMCs exhibit mild clustering of granules. Quantitative analysis of live‐cell time‐lapse imaging revealed that BMMCs derived from double Rab27 KO mice showed almost 10‐fold increase in granules exhibiting fast movement (>1.5 μm/s), which could be disrupted by nocodazole. These results suggest that Rab27 proteins, particularly Rab27b, play a crucial role in mast cell degranulation and that their action regulates the transition from microtubule to actin‐based motility.


The New England Journal of Medicine | 2016

Visual Acuity after Retinal Gene Therapy for Choroideremia

Thomas L. Edwards; Jasleen K. Jolly; Markus Groppe; Alun R. Barnard; Charles L. Cottriall; Tanya Tolmachova; Graeme C.M. Black; Andrew R. Webster; Andrew J. Lotery; Graham E. Holder; Kanmin Xue; Susan M. Downes; Matthew P. Simunovic; Miguel C. Seabra; Robert E. MacLaren

In this study, the subfoveal injection of a gene-therapy vector carrying nonmutated CHM, the gene that, when mutated, causes a form of blindness called choroideremia, was followed by an improvement in visual acuity in two of six patients at 3.5 years after injection.


Journal of Clinical Investigation | 2006

Independent degeneration of photoreceptors and retinal pigment epithelium in conditional knockout mouse models of choroideremia

Tanya Tolmachova; Ross Anders; Magnus Åbrink; Laurence Bugeon; Margaret J. Dallman; Clare E. Futter; José S. Ramalho; Felix Tonagel; Naoyuki Tanimoto; Mathias W. Seeliger; Clare Huxley; Miguel C. Seabra

Choroideremia (CHM) is an X-linked degeneration of the retinal pigment epithelium (RPE), photoreceptors, and choroid, caused by loss of function of the CHM/REP1 gene. REP1 is involved in lipid modification (prenylation) of Rab GTPases, key regulators of intracellular vesicular transport and organelle dynamics. To study the pathogenesis of CHM and to develop a model for assessing gene therapy, we have created a conditional mouse knockout of the Chm gene. Heterozygous-null females exhibit characteristic hallmarks of CHM: progressive degeneration of the photoreceptors, patchy depigmentation of the RPE, and Rab prenylation defects. Using tamoxifen-inducible and tissue-specific Cre expression in combination with floxed Chm alleles, we show that CHM pathogenesis involves independently triggered degeneration of photoreceptors and the RPE, associated with different subsets of defective Rabs.


Traffic | 2010

Rab27a and Rab27b Regulate Neutrophil Azurophilic Granule Exocytosis and NADPH oxidase Activity by Independent Mechanisms

Jennifer L. Johnson; Agnieszka A. Brzezinska; Tanya Tolmachova; Daniela B. Munafo; Beverly A. Ellis; Miguel C. Seabra; Hong Hong; Sergio D. Catz

Neutrophils rely on exocytosis to mobilize receptors and adhesion molecules and to release microbicidal factors. This process should be strictly regulated because uncontrolled release of toxic proteins would be injurious to the host. In vivo studies showed that the small GTPase Rab27a regulates azurophilic granule exocytosis. Using mouse neutrophils deficient in Rab27a (Rab27aash/ash), Rab27b [Rab27b knockout (KO)] or both [Rab27a/b double KO (DoKo)], we investigated the role of the Rab27 isoforms in neutrophils. We found that both Rab27a and Rab27b deficiencies impaired azurophilic granule exocytosis. Rab27aash/ash neutrophils showed upregulation of Rab27b expression which did not compensate for the secretory defects observed in Rab27a‐deficient cells, suggesting that Rab27 isoforms play independent roles in neutrophil exocytosis. Total internal reflection fluorescence microscopy analysis showed that Rab27aash/ash and Rab27b KO neutrophils have a decreased number of azurophilic granules near the plasma membrane. The effect was exacerbated in Rab27a/b DoKo neutrophils. Rab27‐deficient neutrophils showed impaired activation of the reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase at the plasma membrane although intraphagosomal reactive oxygen species (ROS) production was not affected. Exocytosis of secretory vesicles in Rab27‐deficient neutrophils was functional, suggesting that Rab27 GTPases selectively control the exocytosis of neutrophil granules.

Collaboration


Dive into the Tanya Tolmachova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clare E. Futter

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clare Huxley

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge