Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tanya V. Kalin is active.

Publication


Featured researches published by Tanya V. Kalin.


Cancer Research | 2006

Increased Levels of the FoxM1 Transcription Factor Accelerate Development and Progression of Prostate Carcinomas in both TRAMP and LADY Transgenic Mice

Tanya V. Kalin; I-Ching Wang; Timothy Ackerson; Michael L. Major; Carol J. Detrisac; Vladimir V. Kalinichenko; Alexander V. Lyubimov; Robert H. Costa

The proliferation-specific Forkhead Box M1 (FoxM1 or FoxM1b) transcription factor is overexpressed in a number of aggressive human carcinomas. Mouse hepatocytes deficient in FoxM1 fail to proliferate and are highly resistant to developing carcinogen-induced liver tumors. We previously developed a transgenic (TG) mouse line in which the ubiquitous Rosa26 promoter was used to drive expression of the human FoxM1b cDNA transgene in all mouse cell types. To investigate the role of FoxM1b in prostate cancer progression, we bred Rosa26-FoxM1b mice with both TRAMP and LADY TG mouse models of prostate cancer. We show that increased expression of FoxM1b accelerated development, proliferation, and growth of prostatic tumors in both TRAMP and LADY double TG mice. Furthermore, development of prostate carcinomas in TRAMP/Rosa26-FoxM1b double TG mice required high levels of FoxM1 protein to overcome sustained expression of the alternative reading frame tumor suppressor, a potent inhibitor of FoxM1 transcriptional activity. Depletion of FoxM1 levels in prostate cancer cell lines PC-3, LNCaP, or DU-145 by small interfering RNA transfection caused significant reduction in proliferation and anchorage-independent growth on soft agar. This phenotype was associated with increased nuclear levels of the cyclin-dependent kinase inhibitor protein p27(Kip1) and diminished expression of S-phase promoting cyclin A2 and M-phase promoting cyclin B1 proteins. Finally, we show that elevated levels of FoxM1 protein correlate with high proliferation rates in human prostate adenocarcinomas. Our results suggest that the FoxM1 transcription factor regulates development and proliferation of prostate tumors, and that FoxM1 is a novel target for prostate cancer treatment.


Cell Cycle | 2011

Multiple faces of FoxM1 transcription factor: lessons from transgenic mouse models.

Tanya V. Kalin; Vladimir Ustiyan; Vladimir V. Kalinichenko

FoxM1 transcription factor (previously called HFH-11B, Trident, FoxM1b, Win, and MPP2) is expressed in actively dividing cells and critical for cell cycle progression. FoxM1 expression is induced in a variety of tissues during embryogenesis, and Foxm1-/- mice exhibit embryonic lethal phenotype due to multiple abnormalities in the liver, heart, lung and blood vessels. FoxM1 levels are dramatically decreased in adult tissues, but FoxM1 expression is re-activated during organ injury and numerous cancers. In this review, we discussed the role of FoxM1 in different cell lineages using recent data from transgenic mouse models with conditional “gain-of-function” and “loss-of-function” of FoxM1, as well as tissue samples from human patients. In addition, we provided experimental data showing additional sites of FoxM1 expression in the mouse embryo. Novel cell-autonomous roles of FoxM1 in embryonic development, organ injury and cancer formation in vivo were analyzed. Potential application of these findings for the diagnosis and treatment of human diseases were discussed.


The EMBO Journal | 2013

Foxm1 transcription factor is required for lung fibrosis and epithelial‐to‐mesenchymal transition

David Balli; Vladimir Ustiyan; Yufang Zhang; I-Ching Wang; Alex J Masino; Xiaomeng Ren; Jeffrey A. Whitsett; Vladimir V. Kalinichenko; Tanya V. Kalin

Alveolar epithelial cells (AECs) participate in the pathogenesis of pulmonary fibrosis, producing pro‐inflammatory mediators and undergoing epithelial‐to‐mesenchymal transition (EMT). Herein, we demonstrated the critical role of Forkhead Box M1 (Foxm1) transcription factor in radiation‐induced pulmonary fibrosis. Foxm1 was induced in AECs following lung irradiation. Transgenic expression of an activated Foxm1 transcript in AECs enhanced radiation‐induced pneumonitis and pulmonary fibrosis, and increased the expression of IL‐1β, Ccl2, Cxcl5, Snail1, Zeb1, Zeb2 and Foxf1. Conditional deletion of Foxm1 from respiratory epithelial cells decreased radiation‐induced pulmonary fibrosis and prevented the increase in EMT‐associated gene expression. siRNA‐mediated inhibition of Foxm1 prevented TGF‐β‐induced EMT in vitro. Foxm1 bound to and increased promoter activity of the Snail1 gene, a critical transcriptional regulator of EMT. Expression of Snail1 restored TGF‐β‐induced loss of E‐cadherin in Foxm1‐deficient cells in vitro. Lineage‐tracing studies demonstrated that Foxm1 increased EMT during radiation‐induced pulmonary fibrosis in vivo. Foxm1 is required for radiation‐induced pulmonary fibrosis by enhancing the expression of genes critical for lung inflammation and EMT.


Oncogene | 2008

Transgenic expression of the forkhead box M1 transcription factor induces formation of lung tumors

Wang Ic; Meliton L; Tretiakova M; Robert H. Costa; Vladimir V. Kalinichenko; Tanya V. Kalin

The forkhead box m1 (Foxm1 or Foxm1b) protein (previously called HFH-11B, Trident, Win or MPP2) is abundantly expressed in human non-small cell lung cancers where it transcriptionally induces expression of genes essential for proliferation of tumor cells. In this study, we used Rosa26-Foxm1 transgenic mice, in which the Rosa26 promoter drives ubiquitous expression of Foxm1 transgene, to identify new signaling pathways regulated by Foxm1. Lung tumors were induced in Rosa26-Foxm1 mice using the 3-methylcholanthrene (MCA)/butylated hydroxytoluene (BHT) lung tumor initiation/promotion protocol. Tumors from MCA/BHT-treated Rosa26-Foxm1 mice displayed a significant increase in the number, size and DNA replication compared to wild-type mice. Elevated tumor formation in Rosa26-Foxm1 transgenic lungs was associated with persistent pulmonary inflammation, macrophage infiltration and increased expression of cyclooxygenase-2 (Cox-2), Cdc25C phosphatase, cyclin E2, chemokine ligands CXCL5, CXCL1 and CCL3, cathepsins and matrix metalloprotease-12. Cell culture experiments with A549 human lung adenocarcinoma cells demonstrated that depletion of Foxm1 by either short interfering RNA transfection or treatment with Foxm1-inhibiting ARF 26-44 peptide significantly reduced Cox-2 expression. In co-transfection experiments, Foxm1 protein-induced Cox-2 promoter activity and directly bound to the −2566/−2580 bp region of human Cox-2 promoter.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Forkhead Box m1 transcription factor is required for perinatal lung function

Tanya V. Kalin; I-Ching Wang; Lucille N. Meliton; Yufang Zhang; Susan E. Wert; Xiaomeng Ren; Jonathan Snyder; Sheila M. Bell; Lloyd H Graf; Jeffrey A. Whitsett; Vladimir V. Kalinichenko

The Forkhead Box m1 (Foxm1 or Foxm1b) transcription factor (previously called HFH-11B, Trident, Win, or MPP2) is an important positive regulator of DNA replication and mitosis in a variety of cell types. Global deletion of Foxm1 in Foxm1−/− mice is lethal in the embryonic period, causing multiple abnormalities in the liver, heart, lung, and blood vessels. In the present study, Foxm1 was deleted conditionally in the respiratory epithelium (epFoxm1−/−). Surprisingly, deletion of Foxm1 did not alter lung growth, branching morphogenesis, or epithelial proliferation but inhibited lung maturation and caused respiratory failure after birth. Maturation defects in epFoxm1−/− lungs were associated with decreased expression of T1-α and aquaporin 5, consistent with a delay of type I cell differentiation. Expression of surfactant-associated proteins A, B, C, and D was decreased by deletion of Foxm1. Foxm1 directly bound and induced transcriptional activity of the mouse surfactant protein B and A (Sftpb and Sftpa) promoters in vitro, indicating that Foxm1 is a direct transcriptional activator of these genes. Foxm1 is critical for surfactant homeostasis and lung maturation before birth and is required for adaptation to air breathing.


PLOS ONE | 2009

Deletion of Forkhead Box M1 Transcription Factor from Respiratory Epithelial Cells Inhibits Pulmonary Tumorigenesis

I-Ching Wang; Lucille N. Meliton; Xiaomeng Ren; Yufang Zhang; David Balli; Jonathan Snyder; Jeffrey A. Whitsett; Vladimir V. Kalinichenko; Tanya V. Kalin

The Forkhead Box m1 (Foxm1) protein is induced in a majority of human non-small cell lung cancers and its expression is associated with poor prognosis. However, specific requirements for the Foxm1 in each cell type of the cancer lesion remain unknown. The present study provides the first genetic evidence that the Foxm1 expression in respiratory epithelial cells is essential for lung tumorigenesis. Using transgenic mice, we demonstrated that conditional deletion of Foxm1 from lung epithelial cells (epFoxm1−/− mice) prior to tumor initiation caused a striking reduction in the number and size of lung tumors, induced by either urethane or 3-methylcholanthrene (MCA)/butylated hydroxytoluene (BHT). Decreased lung tumorigenesis in epFoxm1−/− mice was associated with diminished proliferation of tumor cells and reduced expression of Topoisomerase-2α (TOPO-2α), a critical regulator of tumor cell proliferation. Depletion of Foxm1 mRNA in cultured lung adenocarcinoma cells significantly decreased TOPO-2α mRNA and protein levels. Moreover, Foxm1 directly bound to and induced transcription of the mouse TOPO-2α promoter region, indicating that TOPO-2α is a direct target of Foxm1 in lung tumor cells. Finally, we demonstrated that a conditional deletion of Foxm1 in pre-existing lung tumors dramatically reduced tumor growth in the lung. Expression of Foxm1 in respiratory epithelial cells is critical for lung cancer formation and TOPO-2α expression in vivo, suggesting that Foxm1 is a promising target for anti-tumor therapy.


Developmental Biology | 2009

Forkhead Box M1 Transcriptional Factor is Required for Smooth Muscle Cells during Embryonic Development of Blood Vessels and Esophagus

Vladimir Ustiyan; I-Ching Wang; Xiaomeng Ren; Yufang Zhang; Jonathan Snyder; Yan Xu; Susan E. Wert; James L. Lessard; Tanya V. Kalin; Vladimir V. Kalinichenko

The forkhead box m1 (Foxm1 or Foxm1b) transcription factor (previously called HFH-11B, Trident, Win, or MPP2) is expressed in a variety of tissues during embryogenesis, including vascular, airway, and intestinal smooth muscle cells (SMCs). Although global deletion of Foxm1 in Foxm1(-/-) mice is lethal in the embryonic period due to multiple abnormalities in the liver, heart, and lung, the specific role of Foxm1 in SMC remains unknown. In the present study, Foxm1 was deleted conditionally in the developing SMC (smFoxm1(-/-) mice). The majority of smFoxm1(-/-) mice died immediately after birth due to severe pulmonary hemorrhage and structural defects in arterial wall and esophagus. Although Foxm1 deletion did not influence SMC differentiation, decreased proliferation of SMC was found in smFoxm1(-/-) blood vessels and esophagus. Depletion of Foxm1 in cultured SMC caused G(2) arrest and decreased numbers of cells undergoing mitosis. Foxm1-deficiency in vitro and in vivo was associated with reduced expression of cell cycle regulatory genes, including cyclin B1, Cdk1-activator Cdc25b phosphatase, Polo-like 1 and JNK1 kinases, and cMyc transcription factor. Foxm1 is critical for proliferation of smooth muscle cells and is required for proper embryonic development of blood vessels and esophagus.


Oncogene | 2012

Foxm1 transcription factor is required for macrophage migration during lung inflammation and tumor formation

David Balli; Xiaomeng Ren; Fu-Sheng Chou; Emily R. Cross; Yufang Zhang; Vladimir V. Kalinichenko; Tanya V. Kalin

Macrophages have a key role in tumor-associated pulmonary inflammation that supports the proliferation of tumor cells and promotes lung tumor growth. Although increased numbers of tumor-associated macrophages are linked to poor prognosis in lung cancer patients, little is known regarding the transcriptional mechanisms controlling recruitment of macrophages during lung tumorigenesis. Forkhead Box m1 (Foxm1) transcription factor is induced in multiple cell types within tumor lesions and its increased expression is associated with poor prognosis in patients with lung adenocarcinomas. To determine the role of Foxm1 in recruitment of tumor-associated macrophages, a mouse line with macrophage-specific Foxm1 deletion was generated (macFoxm1−/−). Lung tumorigenesis was induced using a 3-methylcholanthrene/butylated hydroxytoluene (BHT; 3,5-di-t-butyl-4-hydroxytoluene) tumor initiation/promotion protocol. Ablation of Foxm1 in macrophages reduced the number and size of lung tumors in macFoxm1−/− mice. Decreased tumorigenesis was associated with diminished proliferation of tumor cells and decreased recruitment of macrophages during the early stages of tumor formation. The expression levels of the pro-inflammatory genes iNOS, Cox-2, interleukin-1b (IL-1b) and IL-6, as well as the migration-related genes macrophage inflammatory protein-1 (MIP-1α), MIP-2 and MMP-12, were decreased in macrophages isolated from macFoxm1−/− mice. Migration of Foxm1-deficient macrophages was reduced in vitro. The chemokine receptors responsible for monocyte recruitment to the lung, CX3CR1 and CXCR4, were decreased in Foxm1-deficient monocytes. In co-transfection experiments, Foxm1 directly bound to and transcriptionally activated the CX3CR1 promoter. Adoptive transfer of wild-type monocytes to macFoxm1−/− mice restored BHT-induced pulmonary inflammation to the levels observed in control mice. Expression of Foxm1 in macrophages is required for pulmonary inflammation, recruitment of macrophages into tumor sites and lung tumor growth.


Cancer Research | 2011

Endothelial Cell-specific Deletion of Transcription Factor FOXM1 Increases Urethane-induced Lung Carcinogenesis

David Balli; Yufang Zhang; Jonathan Snyder; Vladimir V. Kalinichenko; Tanya V. Kalin

Vascular endothelial cells provide essential support to the tumor microenvironment, but little is known about the transcriptional control of endothelial functions during tumorigenesis. Here we define a critical role for the Forkhead transcription factor FoxM1 in modulating the development of tumor-associated endothelial cells. Pulmonary tumorigenesis induced by urethane administration was compared in mice genetically deleted for FoxM1 in endothelial cells (enFoxm1(-/-) mice). Notably, lung tumor number and size were increased in enFoxm1(-/-) mice. Increased tumorigenesis was associated with increased proliferation of tumor cells and increased expression of c-Myc and cyclin D1. Furthermore, perivascular infiltration by inflammatory cells was elevated and inflammatory cells in BAL fluid were increased. Expression of Flk-1 (vascular endothelial growth factor receptor 2) and FoxF1, known regulators of pulmonary inflammation, was decreased in enFoxm1(-/-) mice. siRNA-mediated knockdown of FoxM1 in endothelial cells reduced Flk-1 and FoxF1 expression, which was driven by direct transcriptional induction by FoxM1 as target genes. Endothelial specific deletion of FoxM1 in vivo or in vitro also decreased expression of Sfrp1 (secreted frizzled-related protein 1), a known inhibitor of canonical Wnt signaling, in a manner that was associated with increased Wnt signaling. Taken together, our results suggest that endothelial-specific expression of FoxM1 limits lung inflammation and canonical Wnt signaling in lung epithelial cells, thereby restricting lung tumorigenesis.


Molecular and Cellular Biology | 2013

FOXM1 Promotes Allergen-Induced Goblet Cell Metaplasia and Pulmonary Inflammation

Xiaomeng Ren; Tushar A. Shah; Vladimir Ustiyan; Yufang Zhang; John Shinn; Gang Chen; Jeffrey A. Whitsett; Tanya V. Kalin; Vladimir V. Kalinichenko

ABSTRACT Chronic airway disorders, including chronic obstructive pulmonary disease (COPD), cystic fibrosis, and asthma, are associated with persistent pulmonary inflammation and goblet cell metaplasia and contribute to significant morbidity and mortality worldwide. While the molecular pathogenesis of these disorders is actively studied, little is known regarding the transcriptional control of goblet cell differentiation and mucus hyperproduction. Herein, we demonstrated that pulmonary allergen sensitization induces expression of FOXM1 transcription factor in airway epithelial and inflammatory cells. Conditional deletion of the Foxm1 gene from either airway epithelium or myeloid inflammatory cells decreased goblet cell metaplasia, reduced lung inflammation, and decreased airway resistance in response to house dust mite allergen (HDM). FOXM1 induced goblet cell metaplasia and Muc5AC expression through the transcriptional activation of Spdef. FOXM1 deletion reduced expression of CCL11, CCL24, and the chemokine receptors CCR2 and CX3CR1, resulting in decreased recruitment of eosinophils and macrophages to the lung. Deletion of FOXM1 from dendritic cells impaired the uptake of HDM antigens and decreased cell surface expression of major histocompatibility complex II (MHC II) and costimulatory molecule CD86, decreasing production of Th2 cytokines by activated T cells. Finally, pharmacological inhibition of FOXM1 by ARF peptide prevented HDM-mediated pulmonary responses. FOXM1 regulates genes critical for allergen-induced lung inflammation and goblet cell metaplasia.

Collaboration


Dive into the Tanya V. Kalin's collaboration.

Top Co-Authors

Avatar

Vladimir V. Kalinichenko

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Yufang Zhang

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Vladimir Ustiyan

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Xiaomeng Ren

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jeffrey A. Whitsett

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Craig Bolte

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

I-Ching Wang

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Jonathan Snyder

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Tien Le

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

David Balli

Cincinnati Children's Hospital Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge