Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vladimir V. Kalinichenko is active.

Publication


Featured researches published by Vladimir V. Kalinichenko.


Nature | 2011

Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro

Jason R. Spence; Christopher N. Mayhew; Scott A. Rankin; Matthew Kuhar; Jefferson Vallance; Kathryn Tolle; Elizabeth E. Hoskins; Vladimir V. Kalinichenko; Susanne I. Wells; Aaron M. Zorn; Noah F. Shroyer; James M. Wells

Studies in embryonic development have guided successful efforts to direct the differentiation of human embryonic and induced pluripotent stem cells (PSCs) into specific organ cell types in vitro. For example, human PSCs have been differentiated into monolayer cultures of liver hepatocytes and pancreatic endocrine cells that have therapeutic efficacy in animal models of liver disease and diabetes, respectively. However, the generation of complex three-dimensional organ tissues in vitro remains a major challenge for translational studies. Here we establish a robust and efficient process to direct the differentiation of human PSCs into intestinal tissue in vitro using a temporal series of growth factor manipulations to mimic embryonic intestinal development. This involved activin-induced definitive endoderm formation, FGF/Wnt-induced posterior endoderm pattering, hindgut specification and morphogenesis, and a pro-intestinal culture system to promote intestinal growth, morphogenesis and cytodifferentiation. The resulting three-dimensional intestinal ‘organoids’ consisted of a polarized, columnar epithelium that was patterned into villus-like structures and crypt-like proliferative zones that expressed intestinal stem cell markers. The epithelium contained functional enterocytes, as well as goblet, Paneth and enteroendocrine cells. Using this culture system as a model to study human intestinal development, we identified that the combined activity of WNT3A and FGF4 is required for hindgut specification whereas FGF4 alone is sufficient to promote hindgut morphogenesis. Our data indicate that human intestinal stem cells form de novo during development. We also determined that NEUROG3, a pro-endocrine transcription factor that is mutated in enteric anendocrinosis, is both necessary and sufficient for human enteroendocrine cell development in vitro. PSC-derived human intestinal tissue should allow for unprecedented studies of human intestinal development and disease.


Cancer Research | 2006

The Forkhead Box m1 Transcription Factor Stimulates the Proliferation of Tumor Cells during Development of Lung Cancer

Il-Man Kim; Timothy Ackerson; Sneha Ramakrishna; Maria Tretiakova; I-Ching Wang; Tanya V. Kalin; Michael L. Major; Galina A. Gusarova; Helena M. Yoder; Robert H. Costa; Vladimir V. Kalinichenko

The proliferation-specific Forkhead Box m1 (Foxm1 or Foxm1b) transcription factor (previously called HFH-11B, Trident, Win, or MPP2) regulates expression of cell cycle genes essential for progression into DNA replication and mitosis. Expression of Foxm1 is found in a variety of distinct human cancers including hepatocellular carcinomas, intrahepatic cholangiocarcinomas, basal cell carcinomas, ductal breast carcinomas, and anaplastic astrocytomas and glioblastomas. In this study, we show that human Foxm1 protein is abundantly expressed in highly proliferative human non-small cell lung cancers (NSCLC) as well as in mouse lung tumors induced by urethane. To determine the role of Foxm1 during the development of mouse lung tumors, we used IFN-inducible Mx-Cre recombinase transgene to delete mouse Foxm1 fl/fl-targeted allele before inducing lung tumors with urethane. We show that Mx-Cre Foxm1-/- mice exhibit diminished proliferation of lung tumor cells causing a significant reduction in number and size of lung adenomas. Transient transfection experiments with A549 lung adenocarcinoma cells show that depletion of Foxm1 levels by short interfering RNA caused diminished DNA replication and mitosis and reduced anchorage-independent growth of cell colonies on soft agar. Foxm1-depleted A549 cells exhibit reduced expression of cell cycle-promoting cyclin A2 and cyclin B1 genes. These data show that Foxm1 stimulates the proliferation of tumor cells during progression of NSCLC.


Cancer Research | 2006

Increased Levels of the FoxM1 Transcription Factor Accelerate Development and Progression of Prostate Carcinomas in both TRAMP and LADY Transgenic Mice

Tanya V. Kalin; I-Ching Wang; Timothy Ackerson; Michael L. Major; Carol J. Detrisac; Vladimir V. Kalinichenko; Alexander V. Lyubimov; Robert H. Costa

The proliferation-specific Forkhead Box M1 (FoxM1 or FoxM1b) transcription factor is overexpressed in a number of aggressive human carcinomas. Mouse hepatocytes deficient in FoxM1 fail to proliferate and are highly resistant to developing carcinogen-induced liver tumors. We previously developed a transgenic (TG) mouse line in which the ubiquitous Rosa26 promoter was used to drive expression of the human FoxM1b cDNA transgene in all mouse cell types. To investigate the role of FoxM1b in prostate cancer progression, we bred Rosa26-FoxM1b mice with both TRAMP and LADY TG mouse models of prostate cancer. We show that increased expression of FoxM1b accelerated development, proliferation, and growth of prostatic tumors in both TRAMP and LADY double TG mice. Furthermore, development of prostate carcinomas in TRAMP/Rosa26-FoxM1b double TG mice required high levels of FoxM1 protein to overcome sustained expression of the alternative reading frame tumor suppressor, a potent inhibitor of FoxM1 transcriptional activity. Depletion of FoxM1 levels in prostate cancer cell lines PC-3, LNCaP, or DU-145 by small interfering RNA transfection caused significant reduction in proliferation and anchorage-independent growth on soft agar. This phenotype was associated with increased nuclear levels of the cyclin-dependent kinase inhibitor protein p27(Kip1) and diminished expression of S-phase promoting cyclin A2 and M-phase promoting cyclin B1 proteins. Finally, we show that elevated levels of FoxM1 protein correlate with high proliferation rates in human prostate adenocarcinomas. Our results suggest that the FoxM1 transcription factor regulates development and proliferation of prostate tumors, and that FoxM1 is a novel target for prostate cancer treatment.


Journal of Clinical Investigation | 2007

A cell-penetrating ARF peptide inhibitor of FoxM1 in mouse hepatocellular carcinoma treatment

Galina A. Gusarova; I-Ching Wang; Michael L. Major; Vladimir V. Kalinichenko; Timothy Ackerson; Vladimir Petrovic; Robert H. Costa

The forkhead box m1 (Foxm1) transcription factor is essential for initiation of carcinogen-induced liver tumors; however, whether FoxM1 constitutes a therapeutic target for liver cancer treatment remains unknown. In this study, we used diethylnitrosamine/phenobarbital treatment to induce hepatocellular carcinomas (HCCs) in either WT mice or Arf(-/-)Rosa26-FoxM1b Tg mice, in which forkhead box M1b (FoxM1b) is overexpressed and alternative reading frame (ARF) inhibition of FoxM1 transcriptional activity is eliminated. To pharmacologically reduce FoxM1 activity in HCCs, we subjected these HCC-bearing mice to daily injections of a cell-penetrating ARF(26-44) peptide inhibitor of FoxM1 function. After 4 weeks of this treatment, HCC regions displayed reduced tumor cell proliferation and angiogenesis and a significant increase in apoptosis within the HCC region but not in the adjacent normal liver tissue. ARF peptide treatment also induced apoptosis of several distinct human hepatoma cell lines, which correlated with reduced protein levels of the mitotic regulatory genes encoding polo-like kinase 1, aurora B kinase, and survivin, all of which are transcriptional targets of FoxM1 that are highly expressed in cancer cells and function to prevent apoptosis. These studies indicate that ARF peptide treatment is an effective therapeutic approach to limit proliferation and induce apoptosis of liver cancer cells in vivo.


Journal of Clinical Investigation | 2006

Endothelial cell–restricted disruption of FoxM1 impairs endothelial repair following LPS-induced vascular injury

You Yang Zhao; Xiaopei Gao; Yidan D. Zhao; Muhammad K. Mirza; Randall S. Frey; Vladimir V. Kalinichenko; I-Ching Wang; Robert H. Costa; Asrar B. Malik

Recovery of endothelial integrity after vascular injury is vital for endothelial barrier function and vascular homeostasis. However, little is known about the molecular mechanisms of endothelial barrier repair following injury. To investigate the functional role of forkhead box M1 (FoxM1) in the mechanism of endothelial repair, we generated endothelial cell-restricted FoxM1-deficient mice (FoxM1 CKO mice). These mutant mice were viable and exhibited no overt phenotype. However, in response to the inflammatory mediator LPS, FoxM1 CKO mice displayed significantly protracted increase in lung vascular permeability and markedly increased mortality. Following LPS-induced vascular injury, FoxM1 CKO lungs demonstrated impaired cell proliferation in association with sustained expression of p27(Kip1) and decreased expression of cyclin B1 and Cdc25C. Endothelial cells isolated from FoxM1 CKO lungs failed to proliferate, and siRNA-mediated suppression of FoxM1 expression in human endothelial cells resulted in defective cell cycle progression. Deletion of FoxM1 in endothelial cells induced decreased expression of cyclins, Cdc2, and Cdc25C, increased p27(Kip1) expression, and decreased Cdk activities. Thus, FoxM1 plays a critical role in the mechanism of the restoration of endothelial barrier function following vascular injury. These data suggest that impairment in FoxM1 activation may be an important determinant of the persistent vascular barrier leakiness and edema formation associated with inflammatory diseases.


Cell Cycle | 2011

Multiple faces of FoxM1 transcription factor: lessons from transgenic mouse models.

Tanya V. Kalin; Vladimir Ustiyan; Vladimir V. Kalinichenko

FoxM1 transcription factor (previously called HFH-11B, Trident, FoxM1b, Win, and MPP2) is expressed in actively dividing cells and critical for cell cycle progression. FoxM1 expression is induced in a variety of tissues during embryogenesis, and Foxm1-/- mice exhibit embryonic lethal phenotype due to multiple abnormalities in the liver, heart, lung and blood vessels. FoxM1 levels are dramatically decreased in adult tissues, but FoxM1 expression is re-activated during organ injury and numerous cancers. In this review, we discussed the role of FoxM1 in different cell lineages using recent data from transgenic mouse models with conditional “gain-of-function” and “loss-of-function” of FoxM1, as well as tissue samples from human patients. In addition, we provided experimental data showing additional sites of FoxM1 expression in the mouse embryo. Novel cell-autonomous roles of FoxM1 in embryonic development, organ injury and cancer formation in vivo were analyzed. Potential application of these findings for the diagnosis and treatment of human diseases were discussed.


Journal of Biological Chemistry | 2003

Ubiquitous Expression of the Forkhead Box M1B Transgene Accelerates Proliferation of Distinct Pulmonary Cell Types following Lung Injury

Vladimir V. Kalinichenko; Galina A. Gusarova; Yongjun Tan; I-Ching Wang; Michael L. Major; Xinhe Wang; Helena M. Yoder; Robert H. Costal

The delayed early transcription factor Forkhead Box M1B (FoxM1B) is expressed in proliferating cells, but its expression is extinguished in cells undergoing terminal differentiation. Liver regeneration studies with genetically altered mice that either prematurely expressed FoxM1B in hepatocytes or contained a hepatocyte-specific deletion of the Foxm1b allele demonstrated that FoxM1B is critical for regulating the expression of cell cycle genes required for hepatocyte proliferation. Furthermore, preventing the decline in hepatocyte FoxM1B levels during aging was sufficient to increase regenerating hepatocyte proliferation and expression of cell cycle genes to levels found in young regenerating mouse liver. Although these liver regeneration studies demonstrated that FoxM1B is required for hepatocyte proliferation, whether FoxM1B regulates proliferation of cell types other than hepatocytes remains to be determined. Here, we developed a new TG mouse line in which the –800-base pair Rosa26 promoter was used to drive expression of the FoxM1B transgene in all mouse tissues and found that Rosa26-FoxM1B TG mice were healthy, displaying no developmental defects. We used butylated hydroxytoluene (BHT) lung injury to demonstrate that premature expression of the FoxM1B transgene protein accelerated proliferation of different lung cell types, including alveolar type II epithelial cells, bronchial epithelial and smooth muscle cells, and endothelial cells of pulmonary capillaries and arteries. This was associated with the earlier expression of the cell cycle promoting cyclin A2, cyclin E, cyclin B1, cyclin F, and cyclin dependent kinase-1 (Cdk1) genes and diminished protein levels of Cdk inhibitor p21Cip1. Taken together, these results suggest that increasing FoxM1B levels is an effective means to stimulate cellular proliferation during aging and in lung diseases such as emphysema.


Journal of Biological Chemistry | 2008

FoxM1 regulates transcription of JNK1 to promote the G1/S transition and tumor cell invasiveness.

I-Ching Wang; Yi Ju Chen; Douglas E. Hughes; Timothy Ackerson; Michael L. Major; Vladimir V. Kalinichenko; Robert H. Costa; Pradip Raychaudhuri; Angela L. Tyner; Lester F. Lau

The Forkhead box M1 (FoxM1) protein is a proliferation-specific transcription factor that plays a key role in controlling both the G1/S and G2/M transitions through the cell cycle and is essential for the development of various cancers. We show here that FoxM1 directly activates the transcription of the c-Jun N-terminal kinase (JNK1) gene in U2OS osteosarcoma cells. Expression of JNK1, which regulates the expression of genes important for the G1/S transition, rescues the G1/S but not the G2/M cell cycle block in FoxM1-deficient cells. Knockdown of either FoxM1 or JNK1 inhibits tumor cell migration, invasion, and anchorage-independent growth. However, expression of JNK1 in FoxM1-depleted cells does not rescue these defects, indicating that JNK1 is a necessary but insufficient downstream mediator of FoxM1 in these processes. Consistent with this interpretation, FoxM1 regulates the expression of the matrix metalloproteinases MMP-2 and MMP-9, which play a role in tumor cell invasion, through JNK1-independent and -dependent mechanisms in U2OS cells, respectively. Taken together, these findings identify JNK1 as a critical transcriptional target of FoxM1 that contributes to FoxM1-regulated cell cycle progression, tumor cell migration, invasiveness, and anchorage-independent growth.


The EMBO Journal | 2013

Foxm1 transcription factor is required for lung fibrosis and epithelial‐to‐mesenchymal transition

David Balli; Vladimir Ustiyan; Yufang Zhang; I-Ching Wang; Alex J Masino; Xiaomeng Ren; Jeffrey A. Whitsett; Vladimir V. Kalinichenko; Tanya V. Kalin

Alveolar epithelial cells (AECs) participate in the pathogenesis of pulmonary fibrosis, producing pro‐inflammatory mediators and undergoing epithelial‐to‐mesenchymal transition (EMT). Herein, we demonstrated the critical role of Forkhead Box M1 (Foxm1) transcription factor in radiation‐induced pulmonary fibrosis. Foxm1 was induced in AECs following lung irradiation. Transgenic expression of an activated Foxm1 transcript in AECs enhanced radiation‐induced pneumonitis and pulmonary fibrosis, and increased the expression of IL‐1β, Ccl2, Cxcl5, Snail1, Zeb1, Zeb2 and Foxf1. Conditional deletion of Foxm1 from respiratory epithelial cells decreased radiation‐induced pulmonary fibrosis and prevented the increase in EMT‐associated gene expression. siRNA‐mediated inhibition of Foxm1 prevented TGF‐β‐induced EMT in vitro. Foxm1 bound to and increased promoter activity of the Snail1 gene, a critical transcriptional regulator of EMT. Expression of Snail1 restored TGF‐β‐induced loss of E‐cadherin in Foxm1‐deficient cells in vitro. Lineage‐tracing studies demonstrated that Foxm1 increased EMT during radiation‐induced pulmonary fibrosis in vivo. Foxm1 is required for radiation‐induced pulmonary fibrosis by enhancing the expression of genes critical for lung inflammation and EMT.


Oncogene | 2008

Transgenic expression of the forkhead box M1 transcription factor induces formation of lung tumors

Wang Ic; Meliton L; Tretiakova M; Robert H. Costa; Vladimir V. Kalinichenko; Tanya V. Kalin

The forkhead box m1 (Foxm1 or Foxm1b) protein (previously called HFH-11B, Trident, Win or MPP2) is abundantly expressed in human non-small cell lung cancers where it transcriptionally induces expression of genes essential for proliferation of tumor cells. In this study, we used Rosa26-Foxm1 transgenic mice, in which the Rosa26 promoter drives ubiquitous expression of Foxm1 transgene, to identify new signaling pathways regulated by Foxm1. Lung tumors were induced in Rosa26-Foxm1 mice using the 3-methylcholanthrene (MCA)/butylated hydroxytoluene (BHT) lung tumor initiation/promotion protocol. Tumors from MCA/BHT-treated Rosa26-Foxm1 mice displayed a significant increase in the number, size and DNA replication compared to wild-type mice. Elevated tumor formation in Rosa26-Foxm1 transgenic lungs was associated with persistent pulmonary inflammation, macrophage infiltration and increased expression of cyclooxygenase-2 (Cox-2), Cdc25C phosphatase, cyclin E2, chemokine ligands CXCL5, CXCL1 and CCL3, cathepsins and matrix metalloprotease-12. Cell culture experiments with A549 human lung adenocarcinoma cells demonstrated that depletion of Foxm1 by either short interfering RNA transfection or treatment with Foxm1-inhibiting ARF 26-44 peptide significantly reduced Cox-2 expression. In co-transfection experiments, Foxm1 protein-induced Cox-2 promoter activity and directly bound to the −2566/−2580 bp region of human Cox-2 promoter.

Collaboration


Dive into the Vladimir V. Kalinichenko's collaboration.

Top Co-Authors

Avatar

Tanya V. Kalin

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Vladimir Ustiyan

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Yufang Zhang

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

I-Ching Wang

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Xiaomeng Ren

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jeffrey A. Whitsett

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Robert H. Costa

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Craig Bolte

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Michael L. Major

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Jonathan Snyder

Cincinnati Children's Hospital Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge