Tanya Vavouri
European Bioinformatics Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tanya Vavouri.
PLOS Biology | 2004
Adam Woolfe; Martin Goodson; Debbie K. Goode; Phil Snell; Gayle K. McEwen; Tanya Vavouri; Sarah Smith; Phil North; Heather Callaway; Krys Kelly; Klaudia Walter; Irina I. Abnizova; Walter R. Gilks; Yvonne J. K. Edwards; Julie Cooke; Greg Elgar
In addition to protein coding sequence, the human genome contains a significant amount of regulatory DNA, the identification of which is proving somewhat recalcitrant to both in silico and functional methods. An approach that has been used with some success is comparative sequence analysis, whereby equivalent genomic regions from different organisms are compared in order to identify both similarities and differences. In general, similarities in sequence between highly divergent organisms imply functional constraint. We have used a whole-genome comparison between humans and the pufferfish, Fugu rubripes, to identify nearly 1,400 highly conserved non-coding sequences. Given the evolutionary divergence between these species, it is likely that these sequences are found in, and furthermore are essential to, all vertebrates. Most, and possibly all, of these sequences are located in and around genes that act as developmental regulators. Some of these sequences are over 90% identical across more than 500 bases, being more highly conserved than coding sequence between these two species. Despite this, we cannot find any similar sequences in invertebrate genomes. In order to begin to functionally test this set of sequences, we have used a rapid in vivo assay system using zebrafish embryos that allows tissue-specific enhancer activity to be identified. Functional data is presented for highly conserved non-coding sequences associated with four unrelated developmental regulators (SOX21, PAX6, HLXB9, and SHH), in order to demonstrate the suitability of this screen to a wide range of genes and expression patterns. Of 25 sequence elements tested around these four genes, 23 show significant enhancer activity in one or more tissues. We have identified a set of non-coding sequences that are highly conserved throughout vertebrates. They are found in clusters across the human genome, principally around genes that are implicated in the regulation of development, including many transcription factors. These highly conserved non-coding sequences are likely to form part of the genomic circuitry that uniquely defines vertebrate development.
Cell | 2009
Tanya Vavouri; Jennifer I. Semple; Rosa Garcia-Verdugo; Ben Lehner
Why are genes harmful when they are overexpressed? By testing possible causes of overexpression phenotypes in yeast, we identify intrinsic protein disorder as an important determinant of dosage sensitivity. Disordered regions are prone to make promiscuous molecular interactions when their concentration is increased, and we demonstrate that this is the likely cause of pathology when genes are overexpressed. We validate our findings in two animals, Drosophila melanogaster and Caenorhabditis elegans. In mice and humans the same properties are strongly associated with dosage-sensitive oncogenes, such that mass-action-driven molecular interactions may be a frequent cause of cancer. Dosage-sensitive genes are tightly regulated at the transcriptional, RNA, and protein levels, which may serve to prevent harmful increases in protein concentration under physiological conditions. Mass-action-driven interaction promiscuity is a single theoretical framework that can be used to understand, predict, and possibly treat the effects of increased gene expression in evolution and disease.
Cell | 2014
Anita Öst; Adelheid Lempradl; Eduard Casas; Melanie Weigert; Theodor Tiko; Merdin Deniz; Lorena Pantano; Ulrike Boenisch; Pavel M. Itskov; Marlon Stoeckius; Marius Ruf; Nikolaus Rajewsky; Gunter Reuter; Nicola Iovino; Carlos Ribeiro; Mattias Alenius; Steffen Heyne; Tanya Vavouri; J. Andrew Pospisilik
The global rise in obesity has revitalized a search for genetic and epigenetic factors underlying the disease. We present a Drosophila model of paternal-diet-induced intergenerational metabolic reprogramming (IGMR) and identify genes required for its encoding in offspring. Intriguingly, we find that as little as 2 days of dietary intervention in fathers elicits obesity in offspring. Paternal sugar acts as a physiological suppressor of variegation, desilencing chromatin-state-defined domains in both mature sperm and in offspring embryos. We identify requirements for H3K9/K27me3-dependent reprogramming of metabolic genes in two distinct germline and zygotic windows. Critically, we find evidence that a similar system may regulate obesity susceptibility and phenotype variation in mice and humans. The findings provide insight into the mechanisms underlying intergenerational metabolic reprogramming and carry profound implications for our understanding of phenotypic variation and evolution.
Trends in Genetics | 2008
Greg Elgar; Tanya Vavouri
Aligning and comparing genomic sequences enables the identification of conserved sequence signatures and can enrich for coding and noncoding functional regions. In vertebrates, the comparison of human and rodent genomes and the comparison of evolutionarily distant genomes, such as human and pufferfish, have identified specific sets of ultraconserved sequence elements associated with the control of early development. However, is this just the tip of a conservation iceberg or do these sequences represent a specific class of regulatory element? Studies on the zebrafish phox2b gene region and the ENCODE project suggest that many regulatory elements are not highly conserved, posing intriguing questions about the relationship between noncoding sequence conservation and function and the evolution of regulatory sequences.
BMC Systems Biology | 2008
Jennifer I. Semple; Tanya Vavouri; Ben Lehner
BackgroundThe functions of a eukaryotic cell are largely performed by multi-subunit protein complexes that act as molecular machines or information processing modules in cellular networks. An important problem in systems biology is to understand how, in general, these molecular machines respond to perturbations.ResultsIn yeast, genes that inhibit growth when their expression is reduced are strongly enriched amongst the subunits of multi-subunit protein complexes. This applies to both the core and peripheral subunits of protein complexes, and the subunits of each complex normally have the same loss-of-function phenotypes. In contrast, genes that inhibit growth when their expression is increased are not enriched amongst the core or peripheral subunits of protein complexes, and the behaviour of one subunit of a complex is not predictive for the other subunits with respect to over-expression phenotypes.ConclusionWe propose the principle that the overall activity of a protein complex is in general robust to an increase, but not to a decrease in the expression of its subunits. This means that whereas phenotypes resulting from a decrease in gene expression can be predicted because they cluster on networks of protein complexes, over-expression phenotypes cannot be predicted in this way. We discuss the implications of these findings for understanding how cells are regulated, how they evolve, and how genetic perturbations connect to disease in humans.
Genome Biology | 2007
Tanya Vavouri; Klaudia Walter; Walter R. Gilks; Ben Lehner; Greg Elgar
BackgroundThe human genome contains thousands of non-coding sequences that are often more conserved between vertebrate species than protein-coding exons. These highly conserved non-coding elements (CNEs) are associated with genes that coordinate development, and have been proposed to act as transcriptional enhancers. Despite their extreme sequence conservation in vertebrates, sequences homologous to CNEs have not been identified in invertebrates.ResultsHere we report that nematode genomes contain an alternative set of CNEs that share sequence characteristics, but not identity, with their vertebrate counterparts. CNEs thus represent a very unusual class of sequences that are extremely conserved within specific animal lineages yet are highly divergent between lineages. Nematode CNEs are also associated with developmental regulatory genes, and include well-characterized enhancers and transcription factor binding sites, supporting the proposed function of CNEs as cis-regulatory elements. Most remarkably, 40 of 156 human CNE-associated genes with invertebrate orthologs are also associated with CNEs in both worms and flies.ConclusionA core set of genes that regulate development is associated with CNEs across three animal groups (worms, flies and vertebrates). We propose that these CNEs reflect the parallel evolution of alternative enhancers for a common set of developmental regulatory genes in different animal groups. This re-wiring of gene regulatory networks containing key developmental coordinators was probably a driving force during the evolution of animal body plans. CNEs may, therefore, represent the genomic traces of these hard-wired core gene regulatory networks that specify the development of each alternative animal body plan.
Genome Research | 2010
Insuk Lee; Ben Lehner; Tanya Vavouri; Junha Shin; Andrew G. Fraser; Edward M. Marcotte
Most phenotypes are genetically complex, with contributions from mutations in many different genes. Mutations in more than one gene can combine synergistically to cause phenotypic change, and systematic studies in model organisms show that these genetic interactions are pervasive. However, in human association studies such nonadditive genetic interactions are very difficult to identify because of a lack of statistical power--simply put, the number of potential interactions is too vast. One approach to resolve this is to predict candidate modifier interactions between loci, and then to specifically test these for associations with the phenotype. Here, we describe a general method for predicting genetic interactions based on the use of integrated functional gene networks. We show that in both Saccharomyces cerevisiae and Caenorhabditis elegans a single high-coverage, high-quality functional network can successfully predict genetic modifiers for the majority of genes. For C. elegans we also describe the construction of a new, improved, and expanded functional network, WormNet 2. Using this network we demonstrate how it is possible to rapidly expand the number of modifier loci known for a gene, predicting and validating new genetic interactions for each of three signal transduction genes. We propose that this approach, termed network-guided modifier screening, provides a general strategy for predicting genetic interactions. This work thus suggests that a high-quality integrated human gene network will provide a powerful resource for modifier locus discovery in many different diseases.
Cell | 2016
Kevin Dalgaard; Kathrin Landgraf; Steffen Heyne; Adelheid Lempradl; John Longinotto; Klaus Gossens; Marius Ruf; Michael Orthofer; Ruslan Strogantsev; Madhan Selvaraj; Tess Tsai-Hsiu Lu; Eduard Casas; Raffaele Teperino; M. Azim Surani; Ilona Zvetkova; Debra Rimmington; Y.C. Loraine Tung; Brian Yee Hong Lam; Rachel Larder; Giles S. H. Yeo; Stephen O’Rahilly; Tanya Vavouri; Emma Whitelaw; Josef M. Penninger; Thomas Jenuwein; Ching-Lung Cheung; Anne C. Ferguson-Smith; Anthony P. Coll; Antje Körner; J. Andrew Pospisilik
Summary More than one-half billion people are obese, and despite progress in genetic research, much of the heritability of obesity remains enigmatic. Here, we identify a Trim28-dependent network capable of triggering obesity in a non-Mendelian, “on/off” manner. Trim28+/D9 mutant mice exhibit a bi-modal body-weight distribution, with isogenic animals randomly emerging as either normal or obese and few intermediates. We find that the obese-“on” state is characterized by reduced expression of an imprinted gene network including Nnat, Peg3, Cdkn1c, and Plagl1 and that independent targeting of these alleles recapitulates the stochastic bi-stable disease phenotype. Adipose tissue transcriptome analyses in children indicate that humans too cluster into distinct sub-populations, stratifying according to Trim28 expression, transcriptome organization, and obesity-associated imprinted gene dysregulation. These data provide evidence of discrete polyphenism in mouse and man and thus carry important implications for complex trait genetics, evolution, and medicine. Video Abstract
Trends in Genetics | 2008
Tanya Vavouri; Jennifer I. Semple; Ben Lehner
Genetic redundancy means that two genes can perform the same function. Using a comprehensive phylogenetic analysis, we show here in both Saccharomyces cerevisiae and Caenorhabditis elegans that genetic redundancy is not just a transient consequence of gene duplication, but is often an evolutionary stable state. In multiple examples, genes have retained redundant functions since the divergence of the animal, plant and fungi kingdoms over a billion years ago. The stable conservation of genetic redundancy contrasts with the more rapid evolution of genetic interactions between unrelated genes and can be explained by theoretical models including a piggyback mechanism in which overlapping redundant functions are co-selected with nonredundant ones.
Genome Biology | 2012
Tanya Vavouri; Ben Lehner
BackgroundMore than 50% of human genes initiate transcription from CpG dinucleotide-rich regions referred to as CpG islands. These genes show differences in their patterns of transcription initiation, and have been reported to have higher levels of some activation-associated chromatin modifications.ResultsHere we report that genes with CpG island promoters have a characteristic transcription-associated chromatin organization. This signature includes high levels of the transcription elongation-associated histone modifications H4K20me1, H2BK5me1 and H3K79me1/2/3 in the 5 end of the gene, depletion of the activation marks H2AK5ac, H3K14ac and H3K23ac immediately downstream of the transcription start site (TSS), and characteristic epigenetic asymmetries around the TSS. The chromosome organization factor CTCF may be bound upstream of RNA polymerase in most active CpG island promoters, and an unstable nucleosome at the TSS may be specifically marked by H4K20me3, the first example of such a modification. H3K36 monomethylation is only detected as enriched in the bodies of active genes that have CpG island promoters. Finally, as expression levels increase, peak modification levels of the histone methylations H3K9me1, H3K4me1, H3K4me2 and H3K27me1 shift further away from the TSS into the gene body.ConclusionsThese results suggest that active genes with CpG island promoters have a distinct step-like series of modified nucleosomes after the TSS. The identity, positioning, shape and relative ordering of transcription-associated histone modifications differ between genes with and without CpG island promoters. This supports a model where chromatin organization reflects not only transcription activity but also the type of promoter in which transcription initiates.