Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tao-shih Hsieh is active.

Publication


Featured researches published by Tao-shih Hsieh.


Annual Review of Biochemistry | 2013

New Mechanistic and Functional Insights into DNA Topoisomerases

Stefanie H. Chen; Nei-Li Chan; Tao-shih Hsieh

DNA topoisomerases are natures tools for resolving the unique problems of DNA entanglement that occur owing to unwinding and rewinding of the DNA helix during replication, transcription, recombination, repair, and chromatin remodeling. These enzymes perform topological transformations by providing a transient DNA break, formed by a covalent adduct with the enzyme, through which strand passage can occur. The active site tyrosine is responsible for initiating two transesterifications to cleave and then religate the DNA backbone. The cleavage reaction intermediate is exploited by cytotoxic agents, which have important applications as antibiotics and anticancer drugs. The reactions mediated by these enzymes can also be regulated by their binding partners; one example is a DNA helicase capable of modulating the directionality of strand passage, enabling important functions like reannealing denatured DNA and resolving recombination intermediates. In this review, we cover recent advances in mechanistic insights into topoisomerases and their various cellular functions.


Journal of Molecular Biology | 1991

Drosophila topoisomerase II-DNA interactions are affected by DNA structure☆

Michael T. Howard; Maxwell P. Lee; Tao-shih Hsieh; Jack D. Griffith

The binding of purified Drosophila topoisomerase II to the highly bent DNA segments from the SV40 terminus of replication and C. fasciculata kinetoplast minicircle DNA (kDNA) was examined using electron microscopy (EM). The probability of finding topoisomerase II positioned at or near the bent SV40 terminus and Crithidia fasciculata kDNA was two- and threefold higher, respectively, than along the unbent pBR325 DNA into which the elements had been cloned. Closer examination demonstrated that the enzyme bound preferentially to the junction between the bent and non-bent sequences. Using gel electrophoresis, a cluster of strong sodium dodecyl sulfate-induced topoisomerase II cleavage sites was mapped to the SV40 terminus DNA, and two weak cleavage sites to the C. fasciculata kDNA. As determined by EM, Drosophila topoisomerase II foreshortened the apparent length of DNA by only 15 base-pairs when bound, arguing that it does not wrap DNA around itself. When bound to pBR325 containing the C. fasciculata kDNA and the SV40 terminus, topoisomerase II often produced DNA loops. The size distribution was that predicted from the known probability of any two points along linear DNA colliding. In vitro mapping of topoisomerase II on DNA whose ends were blocked by avidin protein revealed that binding is enhanced at sites located near a blocked end as compared to a free end. These observations may contribute towards establishing a framework for understanding topoisomerase II-DNA interactions.


Journal of Molecular Biology | 1987

Sequence dependence of Drosophila topoisomerase II in plasmid relaxation and DNA binding

Miriam Sander; Tao-shih Hsieh; Andor Udvardy; Paul Schedl

The sequence dependence of Drosophila topoisomerase II supercoil relaxation and binding activities has been examined. The DNA substrates used in binding experiments were two fragments from Drosophila heat shock locus 87A7. One of these DNA fragments includes the coding region for the heat shock protein hsp70, and the other includes the intergenic non-coding region that separates two divergently transcribed copies of the hsp70 gene at the locus. The intergenic region was previously shown to have a much higher density of topoisomerase cleavage sites than the hsp70 coding region. Competition nitrocellulose filter binding assays demonstrate a preferential binding of the intergene fragment, and that binding specificity increases with increasing ionic strength. Dissociation kinetics indicate a greater kinetic stability of topoisomerase II complexes with the intergene DNA fragment. To study topoisomerase II relaxation activity, we used supercoiled plasmids that contained the same fragments from locus 87A7 cloned as inserts. The relative relaxation rates of the two plasmids were determined under several conditions of ionic strength, and when the plasmid substrates were included in separate reactions or when they were mixed in a single reaction. The relaxation properties of these two plasmids can be explained by a coincidence of high-affinity binding sites, strong cleavage sites, and sites used during the catalysis of strand passage events by topoisomerase II. Sequence dependence of topoisomerase II catalytic activity may therefore parallel the sequence dependence of DNA cleavage by this enzyme.


Journal of Biological Chemistry | 2006

Reverse Gyrase Functions as a DNA Renaturase ANNEALING OF COMPLEMENTARY SINGLE-STRANDED CIRCLES AND POSITIVE SUPERCOILING OF A BUBBLE SUBSTRATE

Tao-shih Hsieh; Jody L. Plank

Reverse gyrase is a hyperthermophile-specific enzyme that can positively supercoil DNA concomitant with ATP hydrolysis. However, the DNA supercoiling activity is inefficient and requires an excess amount of enzyme relative to DNA. We report here several activities that reverse gyrase can efficiently mediate with a substoichiometric amount of enzyme. In the presence of a nucleotide cofactor, reverse gyrase can readily relax negative supercoils, but not the positive ones, from a plasmid DNA substrate. Reverse gyrase can completely relax positively supercoiled DNA, provided that the DNA substrate contains a single-stranded bubble. Reverse gyrase efficiently anneals complementary single-stranded circles. A substoichiometric amount of reverse gyrase can insert positive supercoils into DNA with a single-stranded bubble, in contrast to plasmid DNA substrate. We have designed a novel method based on phage-mid DNA vectors to prepare a circular DNA substrate containing a single-stranded bubble with defined length and sequence. With these bubble DNA substrates, we demonstrated that efficient positive supercoiling by reverse gyrase requires a bubble size larger than 20 nucleotides. The activities of annealing single-stranded DNA circles and positive supercoiling of bubble substrate demonstrate that reverse gyrase can function as a DNA renaturase. These biochemical activities also suggest that reverse gyrase can have an important biological function in sensing and eliminating unpaired regions in the genome of a hyperthermophilic organism.


Journal of Biological Chemistry | 2000

Cloning and Characterization of DrosophilaTopoisomerase IIIβ RELAXATION OF HYPERNEGATIVELY SUPERCOILED DNA

Tina M. Wilson; Alice D. Chen; Tao-shih Hsieh

We cloned cDNA encodingDrosophila DNA topoisomerase III. The top3cDNA encodes an 875-amino acid protein, which is nearly 60% identical to mammalian topoisomerase IIIβ enzymes. Similarity between the Drosophila protein and the topoisomerase IIIβs is particularly striking in the carboxyl-terminal region, where all contain eight highly conserved CXXC motifs not found in other topoisomerase III enzymes. We therefore propose theDrosophila protein is a member of the β-subfamily of topoisomerase III enzymes. The top3β gene is a single-copy gene located at 5 E-F on the X chromosome. P-element insertion into the 5′-untranslated region of this gene affects topoisomerase IIIβ protein levels, but not the overall fertility and viability of the fly. We purified topoisomerase IIIβ to near homogeneity and observed relaxation activity only with a hypernegatively supercoiled substrate, but not with plasmid DNA directly isolated from bacterial cells. Despite this difference in substrate preference, the degree of relaxation of the hypernegatively supercoiled substrate is comparable to relaxation of plasmid DNA by other type I enzymes. Drosophila topoisomerase IIIβ forms a covalent linkage to 5′ DNA phosphoryl groups, and the DNA cleavage reaction prefers single-stranded substrate over double-stranded, suggesting an affinity of this enzyme for DNA with non-double-helical structure.


Developmental Biology | 2008

Drosophila homologue of the Rothmund-Thomson syndrome gene: essential function in DNA replication during development.

Jianhong Wu; Christopher Capp; Liping Feng; Tao-shih Hsieh

Members of the RecQ family play critical roles in maintaining genome integrity. Mutations in human RecQL4 cause a rare genetic disorder, Rothmund-Thomson syndrome. Transgenic mice experiments showed that the RecQ4 null mutant causes embryonic lethality. Although biochemical evidence suggests that the Xenopus RecQ4 is required for the initiation of DNA replication in the oocyte extract, its biological functions during development remain to be elucidated. We present here our results in establishing the use of Drosophila as a model system to probe RecQ4 functions. Immunofluorescence experiments monitoring the cellular distribution of RecQ4 demonstrated that RecQ4 expression peaks during S phase, and RecQ4 is expressed only in tissues active in DNA replication, but not in quiescent cells. We have isolated Drosophila RecQ4 hypomorphic mutants, recq(EP) and recq4(23), which specifically reduce chorion gene amplification of follicle cells by 4-5 fold, resulting in thin and fragile eggshells, and female sterility. Quantitative analysis on amplification defects over a 14-kb domain in chorion gene cluster suggests that RecQ4 may have a specific function at or near the origin of replication. A null allele recq4(19) causes a failure in cell proliferation, decrease in DNA replication, chromosomal fragmentation, and lethality at the stage of first instar larvae. The mosaic analysis indicates that cell clones with homozygous recq4(19) fail to proliferate. These results indicate that RecQ4 is essential for viability and fertility, and is required for most aspects of DNA replication during development.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Single-molecule measurements of the opening and closing of the DNA gate by eukaryotic topoisomerase II

R. Derike Smiley; Tammy R. L. Collins; Gordon G. Hammes; Tao-shih Hsieh

Type II DNA topoisomerases are essential and ubiquitous enzymes that perform important functions in chromosome condensation and segregation and in regulating intracellular DNA supercoiling. Topoisomerases carry out these DNA transactions by passing one segment of DNA through the other by using a reversible, enzyme-bridged double strand break. The transient enzyme/DNA adduct is mediated by a phosphodiester bond between the active-site tyrosine and a backbone phosphate of DNA. The opening and closing of the DNA gate, a critical step for strand passage during the catalytic cycle, is coupled to this cleavage/religation. We designed a unique oligonucleotide substrate with a pair of fluorophores straddling the topoisomerase II cleavage site, allowing the use of FRET to monitor the opening of the DNA gate. The DNA substrate undergoes an enzyme-mediated transition between a closed and open state in the presence of ATP, similar to the overall topoisomerase II catalyzed reaction. Single-molecule fluorescence microscopy measurements demonstrate that the transition has comparable rate constants for both the opening and closing reaction during steady-state ATP hydrolysis, with an apparent equilibrium constant near unity. In the presence of AMPPNP, a reduction in FRET occurs, suggesting an opening or partial opening of the DNA gate. However, the single-molecule experiments indicate that the open and closed states do not interconvert at a measurable rate.


Journal of Biological Chemistry | 1998

Analysis of a Core Domain in Drosophila DNA Topoisomerase II TARGETING OF AN ANTITUMOR AGENT ICRF-159

Steve W. C. Chang; Tao Hu; Tao-shih Hsieh

To investigate the biochemical properties of individual domains of eukaryotic topoisomerase (topo) II, two truncation mutants of Drosophila topo II were generated, ND406 and core domain. Both mutants lack the ATPase domain, corresponding to the N-terminal 406 amino acid residues inDrosophila protein. The core domain also lacks 240 amino acid residues of the hydrophilic C-terminal region. The mutant proteins have lost DNA strand passage activity while retaining the ability to cleave the DNA and the sequence preference in protein/DNA interaction. The cleavage experiments carried out in the presence of several topo II poisons suggest that the core domain is the key target for these drugs. We have used glass-fiber filter binding assay and CsCl density gradient ultracentrifugation to monitor the formation of a salt-stable, protein-clamp complex. Both truncation mutant proteins can form a clamp complex in the presence of an antitumor agent, ICRF-159, suggesting that the drug targets the core domain of the enzyme and promotes the intradimeric closure at the N-terminal interface of the core domain. Furthermore, the salt stability of the closed protein clamp induced by ICRF-159 depends on the presence and closure of the N-terminal ATPase domain.


Journal of Biological Chemistry | 2009

Drosophila RecQ4 Has a 3′-5′ DNA Helicase Activity That Is Essential for Viability

Christopher Capp; Jianhong Wu; Tao-shih Hsieh

Members of the RecQ family of proteins are highly conserved DNA helicases that have important functions in the maintenance of genomic stability. Deficiencies in RecQ4 have been linked to human diseases including Rothmund-Thomson, RAPADILINO, and Baller-Gerold syndromes, all of which are characterized by developmental defects, tumor propensity, and genetic instability. However, there are conflicting results shown in the literature regarding the DNA helicase activity of RecQ4. We report here the expression of Drosophila melanogaster RecQ4 with a baculoviral vector and its purification to near homogeneity. The purified protein has a DNA-dependent ATPase activity and is a 3′-5′ DNA helicase dependent on hydrolysis of ATP. The presence of 5′-adenylyl-β,γ-imidodiphosphate (AMPPNP), a nonhydrolyzable ATP analog, promotes stable complex formation between RecQ4 and single-stranded DNA. Drosophila RecQ4 can also anneal complementary single strands; this activity was reduced in the presence of AMPPNP, possibly because of the stable protein-DNA complex formed under such conditions. A point mutation of the highly conserved lysine residue in the helicase domain, although retaining the wild type level of annealing activity, inactivated ATPase and helicase activities and eliminated stable complex formation. These results suggest that the helicase domain alone is responsible for the DNA unwinding action of the Drosophila enzyme. We generated a null recq4 mutant that is homozygous lethal, which we used to test the genetic function of the helicase-dead mutant in flies. Complementation tests showed that the helicase-dead mutant recq4 transgenes are incapable of rescuing the null mutation, demonstrating that the helicase activity has an essential biological function.


Journal of Biological Chemistry | 2009

Helicase-appended Topoisomerases: New Insight into the Mechanism of Directional Strand Transfer

Jody L. Plank; Tao-shih Hsieh

DNA strand passage through an enzyme-mediated gate is a key step in the catalytic cycle of topoisomerases to produce topological transformations in DNA. In most of the reactions catalyzed by topoisomerases, strand passage is not directional; thus, the enzyme simply provides a transient DNA gate through which DNA transport is allowed and thereby resolves the topological entanglement. When studied in isolation, the type IA topoisomerase family appears to conform to this rule. Interestingly, type IA enzymes can carry out directional strand transport as well. We examined here the biochemical mechanism for directional strand passage of two type IA topoisomerases: reverse gyrase and a protein complex of topoisomerase IIIα and Bloom helicase. These enzymes are able to generate vectorial strand transport independent of the supercoiling energy stored in the DNA molecule. Reverse gyrase is able to anneal single strands, thereby increasing linkage number of a DNA molecule. However, topoisomerase IIIα and Bloom helicase can dissolve DNA conjoined with a double Holliday junction, thus reducing DNA linkage. We propose here that the helicase or helicase-like component plays a determinant role in the directionality of strand transport. There is thus a common biochemical ground for the directional strand passage for the type IA topoisomerases.

Collaboration


Dive into the Tao-shih Hsieh's collaboration.

Top Co-Authors

Avatar

Jody L. Plank

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maxwell P. Lee

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jack D. Griffith

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge