Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Taofeng Du is active.

Publication


Featured researches published by Taofeng Du.


Journal of Virology | 2015

MicroRNA miR-24-3p promotes porcine reproductive and respiratory syndrome virus replication through suppression of heme oxygenase-1 expression.

Shuqi Xiao; Xue Wang; Huaibao Ni; Na Li; Angke Zhang; Hongliang Liu; Fengxing Pu; Lele Xu; Jiming Gao; Qin Zhao; Yang Mu; Chengbao Wang; Yani Sun; Taofeng Du; Xingang Xu; Gaiping Zhang; Julian A. Hiscox; Ian Goodfellow; En-Min Zhou

ABSTRACT Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important viruses affecting the swine industry worldwide. Our previous research showed that PRRSV downregulates the expression of heme oxygenase-1 (HO-1), a pivotal cytoprotective enzyme, postinfection and that overexpression of HO-1 inhibits PRRSV replication. MicroRNAs regulate gene expression at the posttranscriptional level and have recently been demonstrated to play vital roles in pathogen-host interactions. The present study sought to determine whether microRNAs modulate HO-1 expression and, by doing so, regulate PRRSV replication. Using bioinformatic prediction and experimental verification, we demonstrate that HO-1 expression is regulated by miR-24-3p. A direct interaction between miR-24-3p and HO-1 mRNA was confirmed using a number of approaches. Overexpression of miR-24-3p significantly decreased HO-1 mRNA and protein levels. PRRSV infection induced miR-24-3p expression to facilitate viral replication. The suppressive effect of HO-1 induction by protoporphyrin IX cobalt chloride (CoPP; a classical inducer of HO-1 expression) on PRRSV replication in MARC-145 cells and primary porcine alveolar macrophages could also be reversed by overexpression of miR-24-3p. Collectively, these results suggested that miR-24-3p promotes PRRSV replication through suppression of HO-1 expression, which not only provides new insights into virus-host interactions during PRRSV infection but also suggests potential new antiviral strategies against PRRSV infection. IMPORTANCE MicroRNAs (miRNAs) play vital roles in viral infections by regulating the expression of viral or host genes at the posttranscriptional level. Heme oxygenase-1 (HO-1), a pivotal cytoprotective enzyme, has antiviral activity for a number of viruses, such as Ebola virus, hepatitis C virus, human immunodeficiency virus, and our focus, PRRSV, which causes great economic losses each year in the swine industry worldwide. Here, we show that PRRSV infection induces host miRNA miR-24-3p expression and that miR-24-3p regulates HO-1 expression through both mRNA degradation and translation repression. Suppression of HO-1 expression by miR-24-3p facilitates PRRSV replication. This work lends credibility to the hypothesis that an arterivirus can manipulate cellular miRNAs to enhance virus replication by regulating antiviral responses following viral infection. Therefore, our findings provide new insights into the pathogenesis of PRRSV.


Scientific Reports | 2016

MYH9 is an Essential Factor for Porcine Reproductive and Respiratory Syndrome Virus Infection

Jiming Gao; Shuqi Xiao; Yihong Xiao; Xiangpeng Wang; Chong Zhang; Qin Zhao; Yuchen Nan; Baicheng Huang; Hongliang Liu; Ningning Liu; Junhua Lv; Taofeng Du; Yani Sun; Yang Mu; Gang Wang; Shahid Faraz Syed; Gaiping Zhang; Julian A. Hiscox; Ian Goodfellow; En-Min Zhou

Porcine reproductive and respiratory syndrome (PRRS) caused by the PRRS virus (PRRSV) is an important swine disease worldwide. PRRSV has a limited tropism for certain cells, which may at least in part be attributed to the expression of the necessary cellular molecules serving as the virus receptors or factors on host cells for virus binding or entry. However, these molecules conferring PRRSV infection have not been fully characterized. Here we show the identification of non-muscle myosin heavy chain 9 (MYH9) as an essential factor for PRRSV infection using the anti-idiotypic antibody specific to the PRRSV glycoprotein GP5. MYH9 physically interacts with the PRRSV GP5 protein via its C-terminal domain and confers susceptibility of cells to PRRSV infection. These findings indicate that MYH9 is an essential factor for PRRSV infection and provide new insights into PRRSV-host interactions and viral entry, potentially facilitating development of control strategies for this important swine disease.


Veterinary Microbiology | 2017

Rabbit hepatitis E virus is an opportunistic pathogen in specific-pathogen-free rabbits with the capability of cross-species transmission

Baoyuan Liu; Yani Sun; Taofeng Du; Yiyang Chen; Xinjie Wang; Baicheng Huang; Huixia Li; Yuchen Nan; Shuqi Xiao; Gaiping Zhang; Julian A. Hiscox; En-Min Zhou; Qin Zhao

Hepatitis E virus (HEV) has been detected in rabbits, a recently identified natural reservoir. In this study, anti-HEV antibodies and viral RNA were detected in rabbits sourced from a specific-pathogen-free (SPF) rabbit vendor in Shaanxi Province, China. BLAST results of partial HEV ORF2 genes cloned here indicated that two viral strains circulated in the rabbits. Sequence determination of the complete genome (7302bp) of one strain and a partial ORF1 gene (1537bp) of the other strain showed that they shared 90% identity with one another and 78%-94% identity with other known rabbit HEVs. In addition, inoculation with rabbit HEV from SPF rabbits studied here resulted in infection of SPF pigs; this cross-species transmission was evidenced by seroconversion, viremia and faecal virus shedding. These results suggest that to prevent spread of this zoonotic pathogen, rabbits should be tested routinely for HEV RNA in SPF vendor facilities.


Scientific Reports | 2016

MicroRNA let-7f-5p Inhibits Porcine Reproductive and Respiratory Syndrome Virus by Targeting MYH9

Na Li; Taofeng Du; Yunhuan Yan; Angke Zhang; Jiming Gao; Gaopeng Hou; Shuqi Xiao; En-Min Zhou

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important viral pathogens in the swine industry. Current antiviral strategies do not effectively prevent and control PRRSV. Recent reports show that microRNAs (miRNAs) play vital roles in viral infections by post transcriptionally regulating the expression of viral or host genes. Our previous research showed that non-muscle myosin heavy chain 9 (MYH9) is an essential factor for PRRSV infection. Using bioinformatic prediction and experimental verification, we demonstrate that MYH9 expression is regulated by the miRNA let-7f-5p, which binds to the MYH9 mRNA 3′UTR and may play an important role during PRRSV infection. To understand how let-7f-5p regulates PRRSV infection, we analyzed the expression pattern of both let-7f-5p and MYH9 in porcine alveolar macrophages (PAMs) after infection with either highly pathogenic PRRSV (HP-PRRSV) or classical type PRRSV (N-PRRSV) using a deep sequencing approach with quantitative real-time PCR validation. Our results showed that both HP-PRRSV and N-PRRSV infection reduced let-7f-5p expression while also inducing MYH9 expression. Furthermore, let-7f-5p significantly inhibited PRRSV replication through suppression of MYH9 expression. These findings not only provide new insights into the pathogenesis of PRRSV, but also suggest potential new antiviral strategies against PRRSV infection.


Journal of Virological Methods | 2014

Development of a blocking ELISA for detection of antibodies against avian hepatitis E virus.

Baoyuan Liu; Qin Zhao; Yani Sun; Xinjie Wang; Jinan Zhao; Taofeng Du; Chengbao Wang; Shuqi Xiao; Yang Mu; Gaiping Zhang; Jianxun Luo; Walter H. Hsu; En-Min Zhou

A blocking enzyme-linked immunosorbent assay (bELISA) was developed for the detection of immunoglobulin G antibodies against avian hepatitis E virus (HEV). In the bELISA, the coating antigen was a truncated protein containing C-terminal 268-amino acid region of ORF2 from an avian HEV strain isolated in China (CaHEV) and blocking antibody was a monoclonal antibody (mAb) 1H5 recognizing the epitope within amino acids 384-414 in the C-terminal 268-amino acid region. The concentration of blocking mAb 1H5 was determined as that yielded an OD450nm value of 1.0 for binding to the coating antigen and the antigen concentration and serum dilution were optimized using a checkerboard titration. A cut-off value of 20.7% at the mean percent inhibition plus 3 standard deviations was determined by testing 265 negative sera. The bELISA had a sensitivity of 98.3% by testing 116 positive sera from chickens infected experimentally with CaHEV and had no cross-reaction with other anti-avian virus antibodies. The compliance rates of the bELISA with indirect ELISA and Western blot were 83.7% and 93.3%, respectively, by testing 300 field chicken sera. These results suggested that the bELISA developed in this study can be used for detection of antibodies against avian HEV and showed high reproducibility compared with indirect ELISA and Western blot methods.


Journal of General Virology | 2014

Identification of an antigenic domain in the N-terminal region of avian hepatitis E virus (HEV) capsid protein that is not common to swine and human HEVs.

Lizhen Wang; Yani Sun; Taofeng Du; Chengbao Wang; Shuqi Xiao; Yang Mu; Gaiping Zhang; Lihong Liu; Frederik Widén; Walter H. Hsu; Qin Zhao; En-Min Zhou

The antigenic domains located in the C-terminal 268 amino acid residues of avian hepatitis E virus (HEV) capsid protein have been characterized. This region shares common epitopes with swine and human HEVs. However, epitopes in the N-terminal 338 amino acid residues have never been reported. In this study, an antigenic domain located between amino acids 23 and 85 was identified by indirect ELISA using the truncated recombinant capsid proteins as coating antigens and anti-avian HEV chicken sera as primary antibodies. In addition, this domain did not react with anti-swine and human HEV sera. These results indicated that the N-terminal 338 amino acid residues of avian HEV capsid protein do not share common epitopes with swine and human HEVs. This finding is important for our understanding of the antigenicity of the avian HEV capsid protein. Furthermore, it has important implications in the selection of viral antigens for serological diagnosis.


Trends in Microbiology | 2017

Antiviral Strategies against PRRSV Infection

Taofeng Du; Yuchen Nan; Shuqi Xiao; Qin Zhao; En-Min Zhou

PRRSV (porcine reproductive and respiratory syndrome virus) is a major economically significant pathogen that has adversely impacted the global swine industry for almost 30 years. Currently PRRSV is estimated to cause losses of almost US


Veterinary Microbiology | 2017

Decreased egg production in laying hens associated with infection with genotype 3 avian hepatitis E virus strain from China

Qin Zhao; Baoyuan Liu; Yani Sun; Taofeng Du; Yiyang Chen; Xinjie Wang; Huixia Li; Yuchen Nan; Gaiping Zhang; En-Min Zhou

600 million per year in the USA. Except for new mutants that continually emerge during PRRSV outbreaks, our understanding of the virology, origin, and evolution of PRRSV and the hosts immune response are largely inadequate. Such limited knowledge impedes development of effective methods to eradicate this virus. In this review, we systematically describe recent advances in anti-PRRSV research, especially focusing on those techniques with the potential to transform current anti-PRRSV strategies. Furthermore, a combination of these new techniques may provide creative insights to guide future PRRSV control and prevention.


Vaccine | 2017

Evaluation of recombinant Chinese avian hepatitis E virus (CaHEV) ORF2 and ORF3 proteins for protection of chickens against CaHEV infection

Shahid Faraz Syed; Yani Sun; Taofeng Du; Yiyang Chen; Baoyuan Liu; Xinjie Wang; Huixia Li; Yuchen Nan; En-Min Zhou; Qin Zhao

To determine the relationship between decreased egg production and avian HEV infection, thirty healthy 23-week-old Hy-Line Variety Brown layer hens were randomly divided into 3 groups with 10 hens per group. Next, a genotype 3 avian HEV strain from China was used to inoculate laying hens via oronasal or intravenous routes using a 50% chicken infectious dose of 500. All hens were necropsied at 14 weeks postinoculation (wpi). Fecal virus shedding, viremia, seroconversion, serum alanine aminotransferase (ALT) increases and liver lesions showed that after intravenous (i.v.) and oronasal inoculation, the laying hens were successfully infected. Compared with the uninoculated group, the i.v. and oronasally inoculated groups exhibited egg production decreases at 1wpi and 2wpi, reaching peak production at 3wpi and 8wpi, respectively. In both groups, decreased production was evident for 12 weeks and overall decreases ranged from 10% to 30%. In addition, in the 7 field layer farms exhibiting decreased egg production, vaccination regimens had been completed against Newcastle disease, infectious bronchitis, avian influenza H9N2 and H5N1 and egg drop syndrome virus. However, circulating avian HEV was confirmed on these farms using tests to detect avian HEV IgG antibodies and RNA. Therefore, the experimental and field data indicate that avian HEV infection acting alone could account for observed decreases in egg production in laying hens.


Free Radical Biology and Medicine | 2017

Heme oxygenase-1 metabolite biliverdin, not iron, inhibits porcine reproductive and respiratory syndrome virus replication

Angke Zhang; Hong Duan; Na Li; Lijuan Zhao; Fengxing Pu; Baicheng Huang; Chunyan Wu; Yuchen Nan; Taofeng Du; Yang Mu; Qin Zhao; Yani Sun; Gaiping Zhang; Julian A. Hiscox; En-Min Zhou; Shuqi Xiao

Avian hepatitis E virus (HEV) is the etiologic agent of big liver and spleen disease in chickens. In 2010, the Chinese avian HEV (CaHEV) strain was isolated from chickens and demonstrated to cause the decreased egg production in layer hens. No avian HEV commercial vaccine has yet been developed to prevent virus infection in China. In this study, recombinant CaHEV truncated ORF2 and complete ORF3 proteins were evaluated separately for immunoprotection of chickens against CaHEV infection. First, truncated ORF2 and complete ORF3 proteins were expressed in Escherichia coli. Next, 48 specific-pathogen-free chickens were randomly divided into three groups. One group was immunized with truncated ORF2 protein, the second group was immunized with recombinant ORF3 protein, while the third group (control) was mock-immunized with PBS. After booster immunization, chickens in all three groups were challenged intravenously with CaHEV infectious stock and assessed for viremia, fecal virus shedding, seroconversion, and gross hepatic lesions. In the ORF2 protein-immunized group, no chickens showed evidence of avian HEV infection. In the ORF3 protein-immunized group, nine chickens exhibited viremia and seven had fecal virus shedding. In the control group, all 16 chickens showed viremia and fecal virus shedding. However, the durations in chickens from the ORF3 protein group (2-4weeks) were shorter than the ones from the control group (4-8weeks). Moreover, no gross liver lesions emerged in the ORF2 protein group, while lesions observed in the ORF3 protein group were milder than in controls. Therefore, the ORF2 protein can confer complete immunoprotection against chicken CaHEV infection, while the ORF3 protein only confers partial immunoprotection.

Collaboration


Dive into the Taofeng Du's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gaiping Zhang

Henan Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge