Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tapan Nayak is active.

Publication


Featured researches published by Tapan Nayak.


OncoImmunology | 2017

Cergutuzumab amunaleukin (CEA-IL2v), a CEA-targeted IL-2 variant-based immunocytokine for combination cancer immunotherapy: Overcoming limitations of aldesleukin and conventional IL-2-based immunocytokines

Christian Klein; Inja Waldhauer; Valeria Nicolini; Anne Freimoser-Grundschober; Tapan Nayak; Danielle J. Vugts; Claire Dunn; Marije Bolijn; Jörg Benz; Martine Stihle; Sabine Lang; Michaele Roemmele; Thomas Hofer; Erwin van Puijenbroek; David Wittig; Samuel Moser; Oliver Ast; Peter Brünker; Ingo H. Gorr; Sebastian Neumann; Maria Cristina de Vera Mudry; Heather Hinton; Flavio Crameri; Jose Saro; Stefan Evers; Christian Gerdes; Marina Bacac; Guus van Dongen; Ekkehard Moessner; Pablo Umana

ABSTRACT We developed cergutuzumab amunaleukin (CEA-IL2v, RG7813), a novel monomeric CEA-targeted immunocytokine, that comprises a single IL-2 variant (IL2v) moiety with abolished CD25 binding, fused to the C-terminus of a high affinity, bivalent carcinoembryonic antigen (CEA)-specific antibody devoid of Fc-mediated effector functions. Its molecular design aims to (i) avoid preferential activation of regulatory T-cells vs. immune effector cells by removing CD25 binding; (ii) increase the therapeutic index of IL-2 therapy by (a) preferential retention at the tumor by having a lower dissociation rate from CEA-expressing cancer cells vs. IL-2R-expressing cells, (b) avoiding any FcγR-binding and Fc effector functions and (c) reduced binding to endothelial cells expressing CD25; and (iii) improve the pharmacokinetics, and thus convenience of administration, of IL-2. The crystal structure of the IL2v-IL-2Rβγ complex was determined and CEA-IL2v activity was assessed using human immune effector cells. Tumor targeting was investigated in tumor-bearing mice using 89Zr-labeled CEA-IL2v. Efficacy studies were performed in (a) syngeneic mouse models as monotherapy and combined with anti-PD-L1, and in (b) xenograft mouse models in combination with ADCC-mediating antibodies. CEA-IL2v binds to CEA with pM avidity but not to CD25, and consequently did not preferentially activate Tregs. In vivo, CEA-IL2v demonstrated superior pharmacokinetics and tumor targeting compared with a wild-type IL-2-based CEA immunocytokine (CEA-IL2wt). CEA-IL2v strongly expanded NK and CD8+ T cells, skewing the CD8+:CD4+ ratio toward CD8+ T cells both in the periphery and in the tumor, and mediated single agent efficacy in syngeneic MC38-CEA and PancO2-CEA models. Combination with trastuzumab, cetuximab and imgatuzumab, all of human IgG1 isotype, resulted in superior efficacy compared with the monotherapies alone. Combined with anti-PD-L1, CEA-IL2v mediated superior efficacy over the respective monotherapies, and over the combination with an untargeted control immunocytokine. These preclinical data support the ongoing clinical investigation of the cergutuzumab amunaleukin immunocytokine with abolished CD25 binding for the treatment of CEA-positive solid tumors in combination with PD-L1 checkpoint blockade and ADCC competent antibodies.


The Journal of Nuclear Medicine | 2015

Immuno-PET and Immuno-SPECT of Rheumatoid Arthritis with Radiolabeled Anti–Fibroblast Activation Protein Antibody Correlates with Severity of Arthritis

Peter Laverman; T. van der Geest; Samantha Y.A. Terry; Danny Gerrits; Birgitte Walgreen; M.M.A. Helsen; Tapan Nayak; Anne Freimoser-Grundschober; I. Waldhauer; R.J. Hosse; E. Moessner; P. Umana; Christian Klein; Wim J.G. Oyen; Marije I. Koenders; Otto C. Boerman

One of the most prominent cell populations playing a role in rheumatoid arthritis (RA) is activated fibroblast-like synoviocytes. Among many other proteins, fibroblast-like synoviocytes dominantly express fibroblast activation protein (FAP). Because of the high expression of FAP in arthritic joints, radioimmunoimaging of activated fibroblasts with anti-FAP antibodies might be an attractive noninvasive imaging tool in RA. Methods: SPECT and PET with 111In- and 89Zr-labeled anti-FAP antibody 28H1 was performed in mice with CIA. The radioactivity uptake in joints was quantified and correlated with arthritis score. Results: Both 111In-28H1 and 89Zr-28H1 showed high uptake in inflamed joints, being 3-fold higher than that of the irrelevant isotype-matched control antibody DP47GS, clearly indicating specific accumulation of 28H1. Uptake of 111In-28H1 ranged from 2.2 percentage injected dose per gram (%ID/g) in noninflamed joints to 32.1 %ID/g in severely inflamed joints. DP47GS accumulation ranged from 1.6 %ID/g in noninflamed tissue to 12.0 %ID/g in severely inflamed joints. Uptake of 28H1 in inflamed joints correlated with arthritis score (Spearman ρ, 0.69; P < 0.0001) and increased with severity of arthritis. Conclusion: SPECT/CT imaging with the anti-FAP antibody 111In-28H1 specifically visualized arthritic joints with high resolution, and tracer accumulation correlated with the severity of the inflammation in murine experimental arthritis. Background uptake of the radiolabeled antibody was low, resulting in excellent image quality. 89Zr-28H1 was less favorable for RA imaging because of an elevated bone uptake of 89Zr. Future studies will focus on the potential role of 28H1 as a tool to monitor therapy response early on.


mAbs | 2014

Preclinical evaluation of 89Zr-labeled anti-CD44 monoclonal antibody RG7356 in mice and cynomolgus monkeys: Prelude to Phase 1 clinical studies.

Danielle J. Vugts; Derrek A. Heuveling; Marijke Stigter-van Walsum; Stefan Weigand; Mats Bergstrom; Guus A.M.S. van Dongen; Tapan Nayak

RG7356 is a humanized antibody targeting the constant region of CD44. RG7356 was radiolabeled with 89Zr for preclinical evaluations in tumor xenograft-bearing mice and normal cynomolgus monkeys to enable study of its biodistribution and the role of CD44 expression on RG7356 uptake. Studies with 89Zr-RG7356 were performed in mice bearing tumor xenografts that differ in the level of CD44 expression (CD44+ or CD44-) and RG7356 responsiveness (resp or non-resp): MDA-MB-231 (CD44+, resp), PL45 (CD44+, non-resp) and HepG2 (CD44–, non-resp). Immuno-PET whole body biodistribution studies were performed in normal cynomolgus monkeys to determine normal organ uptake after administration of a single dose. At 1, 2, 3, and 6 days after injection, 89Zr-RG7356 uptake in MDA-MB-231 (CD44+, resp) xenografts was nearly constant and about 9 times higher than in HepG2 (CD44–, non-resp) xenografts (range 27.44 ± 12.93 to 33.13 ± 7.42% ID/g vs. 3.25 ± 0.38 to 3.90 ± 0.58% ID/g). Uptake of 89Zr-RG7356 was similar in MDA-MB-231 (CD44+, resp) and PL45 (CD44+, non-resp) xenografts. Studies in monkeys revealed antibody uptake in spleen, salivary glands and bone marrow, which might be related to the level of CD44 expression. 89Zr-RG7356 uptake in these normal organs decreased with increasing dose levels of unlabeled RG7356. 89Zr-RG7356 selectively targets CD44+ responsive and non-responsive tumors in mice and CD44+ tissues in monkeys. These studies indicate the importance of accurate antibody dosing in humans to obtain optimal tumor targeting. Moreover, efficient binding of RG7356 to CD44+ tumors may not be sufficient in itself to drive an anti-tumor response.


Oncotarget | 2016

First-in-human phase I clinical trial of RG7356, an anti-CD44 humanized antibody, in patients with advanced, CD44-expressing solid tumors

C. Willemien Menke-van der Houven van Oordt; Carlos Gomez-Roca; Carla M.L. van Herpen; Andrew L. Coveler; Devalingam Mahalingam; Henk M.W. Verheul; Winette T. A. van der Graaf; Randolph Christen; Dominik Rüttinger; Stefan Weigand; Michael Cannarile; Florian Heil; Michael Brewster; Antje Walz; Tapan Nayak; Ernesto Guarin; Valerie Meresse; Christophe Le Tourneau

Transmembrane glycoprotein CD44 is overexpressed in various malignancies. Interactions between CD44 and hyaluronic acid are associated with poor prognosis, making CD44 an attractive therapeutic target. We report results from a first-in-human phase I trial of RG7356, a recombinant anti-CD44 immunoglobulin G1 humanized monoclonal antibody, in patients with advanced CD44-expressing solid malignancies. Sixty-five heavily pretreated patients not amenable to standard therapy were enrolled and received RG7356 intravenously biweekly (q2w) or weekly (qw) in escalating doses from 100 mg to 2,250 mg. RG7356 was well tolerated. Most frequent adverse events were fever, headache and fatigue. Dose-limiting toxicities included headache (1,500 mg q2w and 1,350 mg qw) and febrile neutropenia (2,250 mg q2w). The maximum tolerated dose with q2w dosing was 1,500 mg, but was not defined for qw dosing due to early study termination. Clinical efficacy was modest; 13/61 patients (21%) experienced disease stabilization lasting a median of 12 (range, 6–35) weeks. No apparent dose- or dose schedule-dependent changes in biological activity were reported from blood or tissue analyses. Tumor-targeting by positron emission tomography (PET) using 89Zr-labeled RG7356 was observed for doses ≥200 mg (q2w) warranting further investigation of this agent in combination regimens.


Oncotarget | 2017

Implementing liquid biopsies into clinical decision making for cancer immunotherapy

Dagmar Quandt; Hans Dieter Zucht; Arno Amann; Anne Wulf-Goldenberg; Carl Borrebaeck; Michael Cannarile; Diether Lambrechts; Herbert Oberacher; James Garrett; Tapan Nayak; Michael Kazinski; Charlie E. Massie; Heidi Schwarzenbach; Michele Maio; Robert Prins; Björn Wendik; Richard Hockett; Daniel Enderle; Mikkel Noerholm; Hans Hendriks; Heinz Zwierzina; Barbara Seliger

During the last decade, novel immunotherapeutic strategies, in particular antibodies directed against immune checkpoint inhibitors, have revolutionized the treatment of different malignancies leading to an improved survival of patients. Identification of immune-related biomarkers for diagnosis, prognosis, monitoring of immune responses and selection of patients for specific cancer immunotherapies is urgently required and therefore areas of intensive research. Easily accessible samples in particular liquid biopsies (body fluids), such as blood, saliva or urine, are preferred for serial tumor biopsies. Although monitoring of immune and tumor responses prior, during and post immunotherapy has led to significant advances of patients’ outcome, valid and stable prognostic biomarkers are still missing. This might be due to the limited capacity of the technologies employed, reproducibility of results as well as assay stability and validation of results. Therefore solid approaches to assess immune regulation and modulation as well as to follow up the nature of the tumor in liquid biopsies are urgently required to discover valuable and relevant biomarkers including sample preparation, timing of the collection and the type of liquid samples. This article summarizes our knowledge of the well-known liquid material in a new context as liquid biopsy and focuses on collection and assay requirements for the analysis and the technical developments that allow the implementation of different high-throughput assays to detect alterations at the genetic and immunologic level, which could be used for monitoring treatment efficiency, acquired therapy resistance mechanisms and the prognostic value of the liquid biopsies.


The Journal of Nuclear Medicine | 2016

Monitoring Therapy Response of Experimental Arthritis with Radiolabeled Tracers Targeting Fibroblasts, Macrophages, or Integrin αvβ3

Samantha Y.A. Terry; Marije I. Koenders; Gerben M. Franssen; Tapan Nayak; Anne Freimoser-Grundschober; Christian Klein; Wim J.G. Oyen; Otto C. Boerman; Peter Laverman

Rheumatoid arthritis is an autoimmune disease resulting in chronic synovial inflammation. Molecular imaging could be used to monitor therapy response, thus enabling tailored therapy regimens and enhancing therapeutic outcome. Here, we hypothesized that response to etanercept could be monitored by radionuclide imaging in arthritic mice. We tested 3 different targets, namely fibroblast activation protein (FAP), macrophages, and integrin αvβ3. Methods: Male DBA/1J mice with collagen-induced arthritis were treated with etanercept. SPECT/CT scans were acquired at 1, 24, and 48 h after injection of 111In-RGD2 (integrin αvβ3), 111In-anti-F4/80-A3-1 (antimurine macrophage antibody), or 111In-28H1 (anti-FAP antibody), respectively, with nonspecific controls included. Mice were dissected after the last scan, and scans were analyzed quantitatively and were correlated with macroscopic scoring. Results: Experimental arthritis was imaged with 111In-28H1 (anti-FAP), 111In-anti-F4/80-A3-1, and 111In-RGD2. Tracer uptake in joints correlated with arthritis score. Treatment decreased joint uptake of tracers from 23 ± 15, 8 ± 4, and 2 ± 1 percentage injected dose per gram (%ID/g) to 11 ± 11 (P < 0.001), 4 ± 4 (P < 0.001), and 1 ± 0.2 %ID/g (P < 0.01) for 111In-28H1, 111In-anti-F4/80-A3-1, and 111In-RGD2, respectively. Arthritis-to-blood ratios (in mice with arthritis score 2 per joint) were higher for 111In-28H1 (5.5 ± 1; excluding values > 25), 111In-anti-F4/80-A3-1 (10.4 ± 4), and 111In-RGD2 (7.2 ± 1) than for control 111In-DP47GS (0.7 ± 0.5; P = 0.002), 111In-rat IgG2b (0.5 ± 0.2; P = 0.002), or coinjection of excess RGD2 (3.5), indicating specific uptake of all tracers in arthritic joints. Conclusion: 111In-28H1, 111In-anti-F4/80-A3-1, and 111In-RGD2 can be used to specifically monitor the response to therapy in experimental arthritis at the molecular level. Further studies, however, still need to be performed.


British Journal of Cancer | 2016

Acute tumour response to a bispecific Ang-2-VEGF-A antibody: insights from multiparametric MRI and gene expression profiling

Lauren C.J. Baker; Jessica K.R. Boult; Markus Thomas; Astrid Koehler; Tapan Nayak; Jean Tessier; Chia-Huey Ooi; Fabian Birzele; Anton Belousov; Magdalena Zajac; Carsten Horn; Clare LeFave; Simon P. Robinson

Background:To assess antivascular effects, and evaluate clinically translatable magnetic resonance imaging (MRI) biomarkers of tumour response in vivo, following treatment with vanucizumab, a bispecific human antibody against angiopoietin-2 (Ang-2) and vascular endothelial growth factor-A (VEGF-A).Methods:Colo205 colon cancer xenografts were imaged before and 5 days after treatment with a single 10 mg kg−1 dose of either vanucizumab, bevacizumab (anti-human VEGF-A), LC06 (anti-murine/human Ang-2) or omalizumab (anti-human IgE control). Volumetric response was assessed using T2-weighted MRI, and diffusion-weighted, dynamic contrast-enhanced (DCE) and susceptibility contrast MRI used to quantify tumour water diffusivity (apparent diffusion coefficient (ADC), × 106 mm2 s−1), vascular perfusion/permeability (Ktrans, min−1) and fractional blood volume (fBV, %) respectively. Pathological correlates were sought, and preliminary gene expression profiling performed.Results:Treatment with vanucizumab, bevacizumab or LC06 induced a significant (P<0.01) cytolentic response compared with control. There was no significant change in tumour ADC in any treatment group. Uptake of Gd-DTPA was restricted to the tumour periphery in all post-treatment groups. A significant reduction in tumour Ktrans (P<0.05) and fBV (P<0.01) was determined 5 days after treatment with vanucizumab only. This was associated with a significant (P<0.05) reduction in Hoechst 33342 uptake compared with control. Gene expression profiling identified 20 human genes exclusively regulated by vanucizumab, 6 of which are known to be involved in vasculogenesis and angiogenesis.Conclusions:Vanucizumab is a promising antitumour and antiangiogenic treatment, whose antivascular activity can be monitored using DCE and susceptibility contrast MRI. Differential gene expression in vanucizumab-treated tumours is regulated by the combined effect of Ang-2 and VEGF-A inhibition.


Contrast Media & Molecular Imaging | 2015

Therapy response monitoring of the early effects of a new BRAF inhibitor on melanoma xenograft in mice: evaluation of (18) F-FDG-PET and (18) F-FLT-PET.

Edwin J. W. Geven; Stefan Evers; Tapan Nayak; Mats Bergstrom; Fei Su; Danny Gerrits; Gerben M. Franssen; Otto C. Boerman

Inhibition of the V600E mutated BRAF kinase gene (BRAF(V600E) ) is an important and effective approach to treating melanomas. A new specific small molecule inhibitor of BRAF(V600E) , PLX3603, showed potent melanoma growth-inhibiting characteristics in preclinical studies and is currently under clinical investigation. In this study we investigated the feasibility of (18) F-FDG and (18) F-FLT-PET to monitor the early effects of the BRAF(V600E) inhibitor in mice with melanoma xenografts. SCID/beige mice with subcutaneous (s.c.) A375 melanoma xenografts, expressing BRAF(V600E) , received the BRAF(V600E) inhibitor twice daily orally (0, 25, 50 and 75 mg/kg). At 1, 3 and 7 days after start of therapy, the uptake of (18) F-FDG and (18) F-FLT in the tumor and normal tissues was determined in ex vivo tissue samples. Serial (18) F-FDG and (18) F-FLT-PET scans were acquired of animals at 1 day before and 1, 3 and 7 days after start of treatment with 75 mg/kg BRAF(V600E) inhibitor. A dose-dependent decrease in (18) F-FDG uptake in the A375 tumors was observed by ex vivo biodistribution analysis. Administration of 75 mg/kg BRAF inhibitor for 1, 3 and 7 days resulted in a significantly decreased (18) F-FDG uptake in A375 tumors (41, 35 and 51%, respectively). (18) F-FLT uptake in the A375 tumors was low at baseline and no significant changes in (18) F-FLT uptake were observed at any of the doses administered. These effects were corroborated by serial in vivo (18) F-FDG and (18) F-FLT-PET imaging. These data demonstrate that (18) F-FDG-PET can be used as an imaging biomarker to noninvasively evaluate the early effects of PLX3603.


Current Pharmaceutical Biotechnology | 2014

PET imaging to monitor cancer therapy.

Gaurav Malviya; Tapan Nayak

Improved knowledge and understanding of key aspects of cancer has led to the development of novel cancer therapeutics acting through complex pathways and mode of actions. The success of these novel cancer therapeutics is often difficult to predict using standard response criteria based on anatomic changes. Monitoring response to cancer therapy at molecular level using Positron Emission Tomography (PET) has gained popularity in recent years. PET allows longitudinal assessment of specific biological processes rather than just changes in anatomic changes in tumor size. In this review, we provide an overview on application for PET imaging to monitor cancer therapy with emphases on PET of tumor metabolism, cell proliferation, angiogenesis, hypoxia and receptor dynamics.


The Journal of Nuclear Medicine | 2017

Liposomal treatment of experimental arthritis can be monitored noninvasively with a radiolabeled anti-fibroblast activation protein antibody

Tessa Geest; Peter Laverman; Danny Gerrits; Birgitte Walgreen; Monique H Helsen; Christian Klein; Tapan Nayak; Gert Storm; Josbert M. Metselaar; Marije I. Koenders; Otto C. Boerman

Rheumatoid arthritis is a chronic autoimmune disorder resulting in synovial inflammation. Fibroblast activation protein (FAP) is overexpressed by fibroblastlike synoviocytes in arthritic joints. Radioimmunoimaging with an anti-FAP antibody might be used to monitor the response to therapy, thus enabling tailored therapy strategies and therapeutic outcomes. The aim of this study was to assess whether a radiolabeled anti-FAP antibody could be used to monitor the efficacy of treatment with long-circulating liposomes (LCL) containing prednisolone phosphate (PLP-LCL) in a mouse model of arthritis. Methods: Collagen-induced arthritis (CIA) was induced in male DBA/1J mice. Mice were treated with a single injection (10 mg/kg) of PLP-LCL or empty LCL as a control. SPECT and CT images were acquired 24 h after injection of 99mTc-labeled succinimidyl-hydrazinonicotinamide (99mTc-S-HYNIC)–conjugated anti-FAP antibody 28H1 at 2, 5, and 9 d after treatment. The uptake of 99mTc-S-HYNIC-28H1 in all joints was quantified and correlated with macroscopic arthritis scores. Results: Treatment of CIA with PLP-LCL significantly suppressed joint swelling. At just 1 d after treatment, the macroscopic arthritis scores had decreased by 50%. Scores decreased further, to only 10% of the initial scores, at 5 and 9 d after treatment. In contrast, macroscopic arthritis scores had increased up to 600% in untreated mice at 9 d after the injection of empty LCL. 99mTc-S-HYNIC-28H1 uptake ranged from 1.5 percentage injected dose per gram in noninflamed joints to 22.6 percentage injected dose per gram in severely inflamed joints. The uptake of radiolabeled 28H1 in inflamed joints (percentage injected dose) correlated with the arthritis score (Spearman ρ, 0.77; P < 0.0001). Moreover, the uptake of 99mTc-S-HYNIC-28H1 was slightly increased at 9 d after therapy but was not seen macroscopically, indicating that SPECT/CT imaging might be more sensitive than the macroscopic arthritis scoring method. Conclusion: SPECT/CT imaging with 99mTc-S-HYNIC-28H1 specifically monitored the response to therapy, and tracer accumulation correlated with the severity of inflammation. In addition, SPECT/CT imaging was potentially more sensitive than the macroscopic arthritis scoring method. This study showed that SPECT/CT with 99mTc-S-HYNIC-28H1 could be used to noninvasively monitor the course of CIA in mice.

Collaboration


Dive into the Tapan Nayak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Otto C. Boerman

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marije I. Koenders

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Peter Laverman

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Henk M.W. Verheul

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Birgitte Walgreen

Radboud University Nijmegen

View shared research outputs
Researchain Logo
Decentralizing Knowledge