Tapani Ryhänen
Nokia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tapani Ryhänen.
Nanoscale | 2015
A. C. Ferrari; Francesco Bonaccorso; Vladimir I. Fal'ko; K. S. Novoselov; Stephan Roche; Peter Bøggild; Stefano Borini; Vincenzo Palermo; Nicola Pugno; Jose A. Garrido; Roman Sordan; Alberto Bianco; Laura Ballerini; Maurizio Prato; Elefterios Lidorikis; Jani Kivioja; Claudio Marinelli; Tapani Ryhänen; Alberto F. Morpurgo; Jonathan N. Coleman; Valeria Nicolosi; Luigi Colombo; M. García-Hernández; Adrian Bachtold; Grégory F. Schneider; F. Guinea; Cees Dekker; Matteo Barbone; Zhipei Sun; C. Galiotis
We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.
Sensors and Actuators A-physical | 1995
Timo Veijola; Heikki Kuisma; Juha Lahdenperä; Tapani Ryhänen
Abstract We present a new electric equivalent circuit for the forces created by a squeezed gas film between vertically moving planar surfaces. The model is realized with frequency-dependent resistors and inductors. Circuit analysis tools are applied to calculate the response of a micromechanical silicon capacitive accelerometer in both the frequency and the time domains. The simulations are shown to match the measured frequency responses in an excellent way. We utilize the circuit model to calculate the effective viscosity in a narrow gap between the moving surfaces. The results are compared with different slip-flow equations discussed in the literature. We present a simple approximate equation of the pressure-dependent viscosity that is valid for both viscous and molecular damping regions, and has 5% accuracy.
Nano Letters | 2012
Di Wei; Maik R. J. Scherer; Chris Bower; Piers Andrew; Tapani Ryhänen; Ullrich Steiner
We report the first successful application of an ordered bicontinuous double-gyroid vanadium pentoxide network in an electrochromic supercapacitor. The freestanding vanadia network was fabricated by electrodeposition into a voided block copolymer template that had self-assembled into the double-gyroid morphology. The highly ordered structure with 11.0 nm wide struts and a high specific surface to bulk volume ratio of 161.4 μm(-1) is ideal for fast and efficient lithium ion intercalation/extraction and faradaic surface reactions, which are essential for high energy and high power density electrochemical energy storage devices. Supercapacitors made from such gyroid-structured vanadia electrodes exhibit a high specific capacitance of 155 F g(-1) and show a strong electrochromic color change from green/gray to yellow, indicating the capacitors charge condition. The nanostructuring approach and utilizing an electrode material that has intrinsic electrochemical color-change properties are concepts that can be readily extended to other electrochromic intercalation compounds.
IEEE\/ASME Journal of Microelectromechanical Systems | 2004
Heikki Nieminen; Vladimir Ermolov; Samuli Silanto; Kjell Nybergh; Tapani Ryhänen
This paper presents a novel temperature-compensated two-state microelectromechanical (MEM) capacitor. The principle to minimize temperature dependence is based on geometrical compensation and can be extended to other devices such as MEM varactors. The compensation structure eliminates the effect of intrinsic and thermal stress on device operation. This leads to a temperature-stable device without compromising the quality factor (Q) or the voltage behavior. The compensation structure increases the robustness of the devices, but does not require any modifications to the process. Measurement results verify that the OFF and ON capacitance change is less than 6% and the pull-in voltage is less than 5% when the temperature is varied from -30 to +70/spl deg/C.
Nanotechnology | 2008
Di Wei; Husnu Emrah Unalan; Dongxue Han; Qixian Zhang; Li Niu; G.A.J. Amaratunga; Tapani Ryhänen
This paper describes a new strategy to make a full solid-state, flexible, dye-sensitized solar cell (DSSC) based on novel ionic liquid gel, organic dye, ZnO nanoparticles and carbon nanotube (CNT) thin film stamped onto a polyethylene terephthalate (PET) substrate. The CNTs serve both as the charge collector and as scaffolds for the growth of ZnO nanoparticles, where the black dye molecules are anchored. It opens up the possibility of developing a continuous roll to roll processing for THE mass production of DSSCs.
Journal of Micromechanics and Microengineering | 2002
Heikki Nieminen; Vladimir Ermolov; Kjell Nybergh; Samuli Silanto; Tapani Ryhänen
This paper describes the design principles of electrostatically actuated microelectromechanical capacitors. Key properties, such as capacitance tuning range, quality factor (Q), different control methods, thermal stability, effect of radio frequency signal on capacitance and gas damping are examined. Experimental devices were designed and fabricated using the design principles. The two-gap capacitor has a measured nominal capacitance of 1.58 pF and achieves a tuning range of 2.25:1 with parasitics. When all parasitic capacitances to the substrate are extracted the measured nominal capacitance is 1.15 pF and the tuning range is 2.71:1. The device is made of electroplated gold and has a Q of 66 at 1 GHz, and 53 at 2 GHz. In addition, two- and three-state capacitors were designed, fabricated and characterized.
Nanotechnology | 2011
Di Wei; Hongwei Li; Dongxue Han; Qixian Zhang; Li Niu; Huafeng Yang; Chris Bower; Piers Andrew; Tapani Ryhänen
Different graphene inks have been synthesized by chemical methods. These uniform dispersions were stabilized by various functional groups such as room temperature ionic liquid, polyaniline, polyelectrolyte (poly[2,5-bis(3-sulfonatopropoxy)-1,4-ethynylphenylene-alt-1,4-ethynylphenylene] sodium salt) and poly(styrenesulfonate) (PSS). The dispersions can be easily cast into high-quality, free-standing films but with very different physiochemical properties such as surface tension and adhesion. SEM and AFM methods have been applied to have a detailed study of the properties of the inks. It is found that graphenes modified by p-type polyaniline show the highest surface tension. Diverse surface adhesive properties to the substrate are also found with various functional groups. The different viscoelasticities of graphene inks were related to the microscopic structure of their coating layer and subsequently related to the configuration, chemistry and molecular dimensions of the modifying molecules to establish the property-structure relationship. Modifications of graphene inks made from chemical reduction cannot only enable cost-effective processing for printable electronics but also extend the applications into, for example, self-assembly of graphene via bottom-up nano-architecture and surface energy engineering of the graphenes. To fabricate useful devices, understanding the surface properties of graphene inks is very important. It is the first paper of this kind to study the surface tension and adhesion of graphene influenced by different functional groups.
Journal of Materials Chemistry | 2011
Di Wei; Piers Andrew; Huafeng Yang; Yuanyuan Jiang; Fenghua Li; Changsheng Shan; Weidong Ruan; Dongxue Han; Li Niu; Chris Bower; Tapani Ryhänen; Markku Rouvala; G.A.J. Amaratunga; Ari Ivaska
Different formulations of solution-processable graphene have been characterised as electrode materials for use in electrochemical energy storage devices. Graphene was fabricated by chemical reduction of exfoliated graphene oxide (GO), and modified with either p-type (e.g. polyaniline) or n-type anionic groups (poly(styrenesulfonate) (PSS−) and poly[2,5-bis(3-sulfonatopropoxy)-1,4-ethynylphenylene-alt-1,4-ethynylphenylene] sodium salt (PPE-SO3−) anion). Solutions of these graphene compounds were deposited on charge collecting electrodes and used as battery cathodes. Electrodes using the anionically-modified graphene inks containing anatase titanate (TiO2) nanoparticles show improved performance over pristine graphene ink as well as the p-type conducting polymer modified ones. In addition, the open circuit voltage of batteries based on TiO2 has been boosted over 3 V with good cyclability when mixed with the graphene ink. Combined with a polymer electrolyte, this work suggests a feasible route towards fully printable rechargeable lithium batteries based on graphene inks. This approach is both versatile and scalable and is adaptable to a wide variety of applications.
personal, indoor and mobile radio communications | 2007
Vladimir Ermolov; Markku Heino; Asta Kärkkäinen; Reijo Lehtiniemi; Nikolai Nefedov; Pirjo Pasanen; Zoran Radivojevic; Markku Rouvala; Tapani Ryhänen; Eira Seppälä; Mikko A. Uusitalo
This paper reviews the expected wide and profound impact of nanotechnology for future wireless devices and communication technologies.
IEEE Transactions on Microwave Theory and Techniques | 2004
Vladimir Ermolov; Tomas Lindström; Heikki Nieminen; Mikael Olsson; Michael Read; Tapani Ryhänen; Samuli Silanto; Simon Uhrberg
This paper reports on the modeling and fabrication of a truly three-dimensional high-quality-factor toroidal inductor using polymer replication processes. The critical dimensions are in the micrometer range, and the applied manufacturing method is based on polymer replication. Electrical measurements show that the inductor with an inductance of 6.0 nH exhibits a peak quality factor of 50 at a frequency of 3 GHz. Model verified by the measurement results shows that further improvement is still possible. Furthermore, the applied manufacturing technique can be extended to become a flexible packaging platform.