Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tapasree Roy Sarkar is active.

Publication


Featured researches published by Tapasree Roy Sarkar.


Proceedings of the National Academy of Sciences of the United States of America | 2010

C/EBPδ targets cyclin D1 for proteasome-mediated degradation via induction of CDC27/APC3 expression

Snehalata A. Pawar; Tapasree Roy Sarkar; Kuppusamy Balamurugan; Shikha Sharan; Jun Wang; Youhong Zhang; Steven F. Dowdy; A-Mei Huang; Esta Sterneck

The transcription factor CCAAT/enhancer binding protein δ (C/EBPδ, CEBPD, NFIL-6β) has tumor suppressor function; however, the molecular mechanism(s) by which C/EBPδ exerts its effect are largely unknown. Here, we report that C/EBPδ induces expression of the Cdc27 (APC3) subunit of the anaphase promoting complex/cyclosome (APC/C), which results in the polyubiquitination and degradation of the prooncogenic cell cycle regulator cyclin D1, and also down-regulates cyclin B1, Skp2, and Plk-1. In C/EBPδ knockout mouse embryo fibroblasts (MEF) Cdc27 levels were reduced, whereas cyclin D1 levels were increased even in the presence of activated GSK-3β. Silencing of C/EBPδ, Cdc27, or the APC/C coactivator Cdh1 (FZR1) in MCF-10A breast epithelial cells increased cyclin D1 protein expression. Like C/EBPδ, and in contrast to cyclin D1, Cdc27 was down-regulated in several breast cancer cell lines, suggesting that Cdc27 itself may be a tumor suppressor. Cyclin D1 is a known substrate of polyubiquitination complex SKP1/CUL1/F-box (SCF), and our studies show that Cdc27 directs cyclin D1 to alternative degradation by APC/C. These findings shed light on the role and regulation of APC/C, which is critical for most cellular processes.


Oncogene | 2015

GD3 synthase regulates epithelial–mesenchymal transition and metastasis in breast cancer

Tapasree Roy Sarkar; Venkata Lokesh Battula; Steven J. Werden; Geraldine V. Vijay; E Q Ramirez-Peña; Joseph H. Taube; Jeffrey T. Chang; Naoyuki Miura; Weston Porter; Nathalie Sphyris; Michael Andreeff; Sendurai A. Mani

The epithelial–mesenchymal transition (EMT) bestows cancer cells with increased stem cell properties and metastatic potential. To date, multiple extracellular stimuli and transcription factors have been shown to regulate EMT. Many of them are not druggable and therefore it is necessary to identify targets, which can be inhibited using small molecules to prevent metastasis. Recently, we identified the ganglioside GD2 as a novel breast cancer stem cell marker. Moreover, we found that GD3 synthase (GD3S)—an enzyme involved in GD2 biosynthesis—is critical for GD2 production and could serve as a potential druggable target for inhibiting tumor initiation and metastasis. Indeed, there is a small molecule known as triptolide that has been shown to inhibit GD3S function. Accordingly, in this manuscript, we demonstrate that the inhibition of GD3S using small hairpin RNA or triptolide compromises the initiation and maintenance of EMT instigated by various signaling pathways, including Snail, Twist and transforming growth factor-β1 as well as the mesenchymal characteristics of claudin-low breast cancer cell lines (SUM159 and MDA-MB-231). Moreover, GD3S is necessary for wound healing, migration, invasion and stem cell properties in vitro. Most importantly, inhibition of GD3S in vivo prevents metastasis in experimental as well as in spontaneous syngeneic wild-type mouse models. We also demonstrate that the transcription factor FOXC2, a central downstream effector of several EMT pathways, directly regulates GD3S expression by binding to its promoter. In clinical specimens, the expression of GD3S correlates with poor prognosis in triple-negative human breast tumors. Moreover, GD3S expression correlates with activation of the c-Met signaling pathway leading to increased stem cell properties and metastatic competence. Collectively, these findings suggest that the GD3S-c-Met axis could serve as an effective target for the treatment of metastatic breast cancers.


Proceedings of the National Academy of Sciences of the United States of America | 2010

CCAAT/enhancer binding protein delta (C/EBPδ, CEBPD)-mediated nuclear import of FANCD2 by IPO4 augments cellular response to DNA damage

Jun Wang; Tapasree Roy Sarkar; Ming Zhou; Shikha Sharan; Daniel A. Ritt; Timothy D. Veenstra; Deborah K. Morrison; A-Mei Huang; Esta Sterneck

Maintenance of genomic integrity is an essential cellular function. We previously reported that the transcription factor and tumor suppressor CCAAT/enhancer binding protein δ (C/EBPδ, CEBPD; also known as “NFIL-6β”) promotes genomic stability. However, the molecular mechanism was not known. Here, we show that C/EBPδ is a DNA damage-induced gene, which supports survival of mouse bone marrow cells, mouse embryo fibroblasts (MEF), human fibroblasts, and breast tumor cells in response to the DNA cross-linking agent mitomycin C (MMC). Using gene knockout, protein depletion, and overexpression studies, we found that C/EBPδ promotes monoubiquitination of the Fanconi anemia complementation group D2 protein (FANCD2), which is necessary for its function in replication-associated DNA repair. C/EBPδ interacts with FANCD2 and importin 4 (IPO4, also known as “Imp4” and “RanBP4”) via separate domains, mediating FANCD2–IPO4 association and augmenting nuclear import of FANCD2, a prerequisite for its monoubiquitination. This study identifies a transcription-independent activity of C/EBPδ in the DNA damage response that may in part underlie its tumor suppressor function. Furthermore, we report a function of IPO4 and nuclear import in the Fanconi anemia pathway of DNA repair.


Neoplasia | 2014

Pathway-Centric Integrative Analysis Identifies RRM2 as a Prognostic Marker in Breast Cancer Associated with Poor Survival and Tamoxifen Resistance

Nagireddy Putluri; Suman Maity; Ramakrishna Kommagani; Chad J. Creighton; Vasanta Putluri; Fengju Chen; Sarmishta Nanda; Salil Kumar Bhowmik; Atsushi Terunuma; Tiffany H. Dorsey; Agostina Nardone; Xiaoyong Fu; Chad A. Shaw; Tapasree Roy Sarkar; Rachel Schiff; John P. Lydon; Bert W. O’Malley; Stefan Ambs; Gokul M. Das; George Michailidis; Arun Sreekumar

Breast cancer (BCa) molecular subtypes include luminal A, luminal B, normal-like, HER-2–enriched, and basal-like tumors, among which luminal B and basal-like cancers are highly aggressive. Biochemical pathways associated with patient survival or treatment response in these more aggressive subtypes are not well understood. With the limited availability of pathologically verified clinical specimens, cell line models are routinely used for pathway-centric studies. We measured the metabolome of luminal and basal-like BCa cell lines using mass spectrometry, linked metabolites to biochemical pathways using Gene Set Analysis, and developed a novel rank-based method to select pathways on the basis of their enrichment in patient-derived omics data sets and prognostic relevance. Key mediators of the pathway were then characterized for their role in disease progression. Pyrimidine metabolism was altered in luminal versus basal BCa, whereas the combined expression of its associated genes or expression of one key gene, ribonucleotide reductase subunit M2 (RRM2) alone, associated significantly with decreased survival across all BCa subtypes, as well as in luminal patients resistant to tamoxifen. Increased RRM2 expression in tamoxifen-resistant patients was verified using tissue microarrays, whereas the metabolic products of RRM2 were higher in tamoxifen-resistant cells and in xenograft tumors. Both genetic and pharmacological inhibition of this key enzyme in tamoxifen-resistant cells significantly decreased proliferation, reduced expression of cell cycle genes, and sensitized the cells to tamoxifen treatment. Our study suggests for evaluating RRM2-associated metabolites as noninvasive markers for tamoxifen resistance and its pharmacological inhibition as a novel approach to overcome tamoxifen resistance in BCa.


Oncogene | 2016

Phosphorylation of serine 367 of FOXC2 by p38 regulates ZEB1 and breast cancer metastasis, without impacting primary tumor growth

Steven J. Werden; Nathalie Sphyris; Tapasree Roy Sarkar; A N Paranjape; A M LaBaff; Joseph H. Taube; Brett G. Hollier; E Q Ramirez-Peña; Rama Soundararajan; P den Hollander; E Powell; G V Echeverria; Naoyuki Miura; Jeffrey T. Chang; H Piwnica-Worms; Jeffrey M. Rosen; Sendurai A. Mani

Metastatic competence is contingent upon the aberrant activation of a latent embryonic program, known as the epithelial–mesenchymal transition (EMT), which bestows stem cell properties as well as migratory and invasive capabilities upon differentiated tumor cells. We recently identified the transcription factor FOXC2 as a downstream effector of multiple EMT programs, independent of the EMT-inducing stimulus, and as a key player linking EMT, stem cell traits and metastatic competence in breast cancer. As such, FOXC2 could serve as a potential therapeutic target to attenuate metastasis. However, as FOXC2 is a transcription factor, it is difficult to target by conventional means such as small-molecule inhibitors. Herein, we identify the serine/threonine-specific kinase p38 as a druggable upstream regulator of FOXC2 stability and function that elicits phosphorylation of FOXC2 at serine 367 (S367). Using an orthotopic syngeneic mouse tumor model, we make the striking observation that inhibition of p38-FOXC2 signaling selectively attenuates metastasis without impacting primary tumor growth. In this model, circulating tumor cell numbers are significantly reduced in mice treated with the p38 inhibitor SB203580, relative to vehicle-treated counterparts. Accordingly, genetic or pharmacological inhibition of p38 decreases FOXC2 protein levels, reverts the EMT phenotype and compromises stem cell attributes in vitro. We also identify the EMT-regulator ZEB1—known to directly repress E-cadherin/CDH1—as a downstream target of FOXC2, critically dependent on its activation by p38. Consistent with the notion that activation of the p38-FOXC2 signaling axis represents a critical juncture in the acquisition of metastatic competence, the phosphomimetic FOXC2(S367E) mutant is refractory to p38 inhibition both in vitro and in vivo, whereas the non-phosphorylatable FOXC2(S367A) mutant fails to elicit EMT and upregulate ZEB1. Collectively, our data demonstrate that FOXC2 regulates EMT, stem cell traits, ZEB1 expression and metastasis in a p38-dependent manner, and attest to the potential utility of p38 inhibitors as antimetastatic agents.


Oncotarget | 2016

Rab25 acts as an oncogene in luminal B breast cancer and is causally associated with Snail driven EMT

Shreya Mitra; Lorenzo Federico; Wei Zhao; Jennifer B. Dennison; Tapasree Roy Sarkar; Fan Zhang; Vinita Takiar; Kwai W. Cheng; Sendurai A. Mani; Ju Seog Lee; Gordon B. Mills

The Rab GTPases regulate vesicular trafficking machinery that transports and delivers a diverse pool of cargo, including growth factor receptors, integrins, nutrient receptors and junction proteins to specific intracellular sites. The trafficking machinery is indeed a major posttranslational modifier and is critical for cellular homeostasis. Deregulation of this stringently controlled system leads to a wide spectrum of disorders including cancer. Herein we demonstrate that Rab25, a key GTPase, mostly decorating the apical recycling endosome, is a dichotomous variable in breast cancer cell lines with higher mRNA and protein expression in Estrogen Receptor positive (ER+ve) lines. Rab25 and its effector, Rab Coupling Protein (RCP) are frequently coamplified and coordinately elevated in ER+ve breast cancers. In contrast, Rab25 levels are decreased in basal-like and almost completely lost in claudin-low tumors. This dichotomy exists despite the presence of the 1q amplicon that hosts Rab25 across breast cancer subtypes and is likely due to differential methylation of the Rab25 promoter. Functionally, elevated levels of Rab25 drive major hallmarks of cancer including indefinite growth and metastasis but in case of luminal B breast cancer only. Importantly, in such ER+ve tumors, coexpression of Rab25 and its effector, RCP is significantly associated with a markedly worsened clinical outcome. Importantly, in claudin-low cell lines, exogenous Rab25 markedly inhibits cell migration. Similarly, during Snail-induced epithelial to mesenchymal transition (EMT) exogenous Rab25 potently reverses Snail-driven invasion. Overall, this study substantiates a striking context dependent role of Rab25 in breast cancer where Rab25 is amplified and enhances aggressiveness in luminal B cancers while in claudin-low tumors, Rab25 is lost indicating possible anti-tumor functions.


Oncotarget | 2017

The H3K27me3-demethylase KDM6A is suppressed in breast cancer stem-like cells, and enables the resolution of bivalency during the mesenchymal-epithelial transition

Joseph H. Taube; Nathalie Sphyris; Kelsey S. Johnson; Keighley N. Reisenauer; Taylor A. Nesbit; Robiya Joseph; Geraldine V. Vijay; Tapasree Roy Sarkar; Neeraja Bhangre; Joon Jin Song; Jeffrey T. Chang; Min Gyu Lee; Rama Soundararajan; Sendurai A. Mani

The deposition of the activating H3K4me3 and repressive H3K27me3 histone modifications within the same promoter, forming a so-called bivalent domain, maintains gene expression in a repressed but transcription-ready state. We recently reported a significantly increased incidence of bivalency following an epithelial-mesenchymal transition (EMT), a process associated with the initiation of the metastatic cascade. The reverse process, known as the mesenchymal-epithelial transition (MET), is necessary for efficient colonization. Here, we identify numerous genes associated with differentiation, proliferation and intercellular adhesion that are repressed through the acquisition of bivalency during EMT, and re-expressed following MET. The majority of EMT-associated bivalent domains arise through H3K27me3 deposition at H3K4me3-marked promoters. Accordingly, we show that the expression of the H3K27me3-demethylase KDM6A is reduced in cells that have undergone EMT, stem-like subpopulations of mammary cell lines and stem cell-enriched triple-negative breast cancers. Importantly, KDM6A levels are restored following MET, concomitant with CDH1/E-cadherin reactivation through H3K27me3 removal. Moreover, inhibition of KDM6A, using the H3K27me3-demethylase inhibitor GSK-J4, prevents the re-expression of bivalent genes during MET. Our findings implicate KDM6A in the resolution of bivalency accompanying MET, and suggest KDM6A inhibition as a viable strategy to suppress metastasis formation in breast cancer.The deposition of the activating H3K4me3 and repressive H3K27me3 histone modifications within the same promoter, forming a so-called bivalent domain, maintains gene expression in a repressed but transcription-ready state. We recently reported a significantly increased incidence of bivalency following an epithelial-mesenchymal transition (EMT), a process associated with the initiation of the metastatic cascade. The reverse process, known as the mesenchymal-epithelial transition (MET), is necessary for efficient colonization. Here, we identify numerous genes associated with differentiation, proliferation and intercellular adhesion that are repressed through the acquisition of bivalency during EMT, and re-expressed following MET. The majority of EMT-associated bivalent domains arise through H3K27me3 deposition at H3K4me3-marked promoters. Accordingly, we show that the expression of the H3K27me3-demethylase KDM6A is reduced in cells that have undergone EMT, stem-like subpopulations of mammary cell lines and stem cell-enriched triple-negative breast cancers. Importantly, KDM6A levels are restored following MET, concomitant with CDH1/E-cadherin reactivation through H3K27me3 removal. Moreover, inhibition of KDM6A, using the H3K27me3-demethylase inhibitor GSK-J4, prevents the re-expression of bivalent genes during MET. Our findings implicate KDM6A in the resolution of bivalency accompanying MET, and suggest KDM6A inhibition as a viable strategy to suppress metastasis formation in breast cancer.


Development | 2018

PER2 regulation of mammary gland development

Cole M. McQueen; Emily E. Schmitt; Tapasree Roy Sarkar; Jessica Elswood; Richard Metz; David Earnest; Monique Rijnkels; Weston Porter

The molecular clock plays key roles in daily physiological functions, development and cancer. Period 2 (PER2) is a repressive element, which inhibits transcription activated by positive clock elements, resulting in diurnal cycling of genes. However, there are gaps in our understanding of the role of the clock in normal development outside of its time-keeping function. Here, we show that PER2 has a noncircadian function that is crucial to mammalian mammary gland development. Virgin Per2-deficient mice, Per2−/−, have underdeveloped glands, containing fewer bifurcations and terminal ducts than glands of wild-type mice. Using a transplantation model, we show that these changes are intrinsic to the gland and further identify changes in cell fate commitment. Per2−/− mouse mammary glands have a dual luminal/basal phenotypic character in cells of the ductal epithelium. We identified colocalization of E-cadherin and keratin 14 in luminal cells. Similar results were demonstrated using MCF10A and shPER2 MCF10A human cell lines. Collectively this study reveals a crucial noncircadian function of PER2 in mammalian mammary gland development, validates the Per2−/− model, and describes a potential role for PER2 in breast cancer. Summary: The molecular clock is associated with crucial biological processes, but little is known about its role in development. Here, we show that PER2 plays a key role in mammary gland development.


Proceedings of the National Academy of Sciences of the United States of America | 2017

A vimentin binding small molecule leads to mitotic disruption in mesenchymal cancers

Michael Bollong; Mika Pietilä; Aaron D. Pearson; Tapasree Roy Sarkar; Insha Ahmad; Rama Soundararajan; Costas A. Lyssiotis; Sendurai A. Mani; Peter G. Schultz; Luke L. Lairson

Significance Cancer cells derived from mesenchymal tissues or induced to adopt a mesenchymal state have been demonstrated to be largely resistant to standard chemotherapies, necessitating the identification of new effective treatment strategies. From a high throughput screen, we have discovered FiVe1, a compound capable of irreversibly inhibiting the growth of mesenchymally transformed cancer cells by binding to and interfering with the organization and phosphorylation of vimentin (VIM) during mitosis. In contrast to the many naturally and synthetically derived compounds targeting microtubules, we report that chemically targeting an intermediate filament protein, VIM, promotes mitotic catastrophe. As VIM expression is restricted to mesenchymal cells, these results provide a mechanistic basis toward developing genotype-selective chemotherapeutics for the treatment of mesenchymal cancers. Expression of the transcription factor FOXC2 is induced and necessary for successful epithelial–mesenchymal transition, a developmental program that when activated in cancer endows cells with metastatic potential and the properties of stem cells. As such, identifying agents that inhibit the growth of FOXC2-transformed cells represents an attractive approach to inhibit chemotherapy resistance and metastatic dissemination. From a high throughput synthetic lethal screen, we identified a small molecule, FiVe1, which selectively and irreversibly inhibits the growth of mesenchymally transformed breast cancer cells and soft tissue sarcomas of diverse histological subtypes. FiVe1 targets the intermediate filament and mesenchymal marker vimentin (VIM) in a mode which promotes VIM disorganization and phosphorylation during metaphase, ultimately leading to mitotic catastrophe, multinucleation, and the loss of stemness. These findings illustrate a previously undescribed mechanism for interrupting faithful mitotic progression and may ultimately inform the design of therapies for a broad range of mesenchymal cancers.


Molecular and Cellular Oncology | 2015

GD2 and GD3 synthase: novel drug targets for cancer therapy.

Nathalie Sphyris; Tapasree Roy Sarkar; Venkata Lokesh Battula; Michael Andreeff; Sendurai A. Mani

Our recent study suggests that targeting GD3 synthase (also known as ST8SIA1)—the rate-limiting enzyme in biosynthesis of the breast cancer stem cell marker GD2—abrogates metastasis and depletes the cancer stem cell populations within a tumor, thus providing an effective therapeutic strategy against metastatic breast cancers.

Collaboration


Dive into the Tapasree Roy Sarkar's collaboration.

Top Co-Authors

Avatar

Sendurai A. Mani

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Nathalie Sphyris

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jeffrey T. Chang

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Joseph H. Taube

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Esta Sterneck

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Rama Soundararajan

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Shikha Sharan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Steven J. Werden

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Venkata Lokesh Battula

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge