Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tara A. Pelletier is active.

Publication


Featured researches published by Tara A. Pelletier.


Molecular Ecology | 2013

How to fail at species delimitation

Bryan C. Carstens; Tara A. Pelletier; Noah M. Reid; Jordan D. Satler

Species delimitation is the act of identifying species‐level biological diversity. In recent years, the field has witnessed a dramatic increase in the number of methods available for delimiting species. However, most recent investigations only utilize a handful (i.e. 2–3) of the available methods, often for unstated reasons. Because the parameter space that is potentially relevant to species delimitation far exceeds the parameterization of any existing method, a given method necessarily makes a number of simplifying assumptions, any one of which could be violated in a particular system. We suggest that researchers should apply a wide range of species delimitation analyses to their data and place their trust in delimitations that are congruent across methods. Incongruence across the results from different methods is evidence of either a difference in the power to detect cryptic lineages across one or more of the approaches used to delimit species and could indicate that assumptions of one or more of the methods have been violated. In either case, the inferences drawn from species delimitation studies should be conservative, for in most contexts it is better to fail to delimit species than it is to falsely delimit entities that do not represent actual evolutionary lineages.


Systematic Biology | 2014

Poor Fit to the Multispecies Coalescent is Widely Detectable in Empirical Data

Noah M. Reid; Sarah M. Hird; Jeremy M. Brown; Tara A. Pelletier; John D. McVay; Jordan D. Satler; Bryan C. Carstens

Model checking is a critical part of Bayesian data analysis, yet it remains largely unused in systematic studies. Phylogeny estimation has recently moved into an era of increasingly complex models that simultaneously account for multiple evolutionary processes, the statistical fit of these models to the data has rarely been tested. Here we develop a posterior predictive simulation-based model check for a commonly used multispecies coalescent model, implemented in *BEAST, and apply it to 25 published data sets. We show that poor model fit is detectable in the majority of data sets; that this poor fit can mislead phylogenetic estimation; and that in some cases it stems from processes of inherent interest to systematists. We suggest that as systematists scale up to phylogenomic data sets, which will be subject to a heterogeneous array of evolutionary processes, critically evaluating the fit of models to data is an analytical step that can no longer be ignored.


Molecular Ecology | 2015

The evolution of phylogeographic data sets.

Ryan C. Garrick; Isabel A. S. Bonatelli; Chaz Hyseni; Ariadna E. Morales; Tara A. Pelletier; Manolo F. Perez; Edwin Rice; Jordan D. Satler; Rebecca E. Symula; Maria Tereza C. Thomé; Bryan C. Carstens

Empirical phylogeographic studies have progressively sampled greater numbers of loci over time, in part motivated by theoretical papers showing that estimates of key demographic parameters improve as the number of loci increases. Recently, next‐generation sequencing has been applied to questions about organismal history, with the promise of revolutionizing the field. However, no systematic assessment of how phylogeographic data sets have changed over time with respect to overall size and information content has been performed. Here, we quantify the changing nature of these genetic data sets over the past 20 years, focusing on papers published in Molecular Ecology. We found that the number of independent loci, the total number of alleles sampled and the total number of single nucleotide polymorphisms (SNPs) per data set has improved over time, with particularly dramatic increases within the past 5 years. Interestingly, uniparentally inherited organellar markers (e.g. animal mitochondrial and plant chloroplast DNA) continue to represent an important component of phylogeographic data. Single‐species studies (cf. comparative studies) that focus on vertebrates (particularly fish and to some extent, birds) represent the gold standard of phylogeographic data collection. Based on the current trajectory seen in our survey data, forecast modelling indicates that the median number of SNPs per data set for studies published by the end of the year 2016 may approach ~20 000. This survey provides baseline information for understanding the evolution of phylogeographic data sets and underscores the fact that development of analytical methods for handling very large genetic data sets will be critical for facilitating growth of the field.


Molecular Ecology | 2014

Model choice for phylogeographic inference using a large set of models

Tara A. Pelletier; Bryan C. Carstens

Model‐based analyses are common in phylogeographic inference because they parameterize processes such as population division, gene flow and expansion that are of interest to biologists. Approximate Bayesian computation is a model‐based approach that can be customized to any empirical system and used to calculate the relative posterior probability of several models, provided that suitable models can be identified for comparison. The question of how to identify suitable models is explored using data from Plethodon idahoensis, a salamander that inhabits the North American inland northwest temperate rainforest. First, we conduct an ABC analysis using five models suggested by previous research, calculate the relative posterior probabilities and find that a simple model of population isolation has the best fit to the data (PP = 0.70). In contrast to this subjective choice of models to include in the analysis, we also specify models in a more objective manner by simulating prior distributions for 143 models that included panmixia, population isolation, change in effective population size, migration and range expansion. We then identify a smaller subset of models for comparison by generating an expectation of the highest posterior probability that a false model is likely to achieve due to chance and calculate the relative posterior probabilities of only those models that exceed this expected level. A model that parameterized divergence with population expansion and gene flow in one direction offered the best fit to the P. idahoensis data (in contrast to an isolation‐only model from the first analysis). Our investigation demonstrates that the determination of which models to include in ABC model choice experiments is a vital component of model‐based phylogeographic analysis.


Systematic Biology | 2015

Historical Species Distribution Models Predict Species Limits in Western Plethodon Salamanders

Tara A. Pelletier; Charlie Crisafulli; Steve Wagner; Amanda J. Zellmer; Bryan C. Carstens

Allopatry is commonly used to predict boundaries in species delimitation investigations under the assumption that currently allopatric distributions are indicative of reproductive isolation; however, species ranges are known to change over time. Incorporating a temporal perspective of geographic distributions should improve species delimitation; to explore this, we investigate three species of western Plethodon salamanders that have shifted their ranges since the end of the Pleistocene. We generate species distribution models (SDM) of the current range, hindcast these models onto a climatic model 21 Ka, and use three molecular approaches to delimit species in an integrated fashion. In contrast to expectations based on the current distribution, we detect no independent lineages in species with allopatric and patchy distributions (Plethodon vandykei and Plethodon larselli). The SDMs indicate that probable habitat is more expansive than their current range, especially during the last glacial maximum (LGM) (21 Ka). However, with a contiguous distribution, two independent lineages were detected in Plethodon idahoensis, possibly due to isolation in multiple glacial refugia. Results indicate that historical SDMs are a better predictor of species boundaries than current distributions, and strongly imply that researchers should incorporate SDM and hindcasting into their investigations and the development of species hypotheses.


Biology Letters | 2018

Geographical range size and latitude predict population genetic structure in a global survey

Tara A. Pelletier; Bryan C. Carstens

While genetic diversity within species is influenced by both geographical distance and environmental gradients, it is unclear what other factors are likely to promote population genetic structure. Using a machine learning framework and georeferenced DNA sequences from more than 8000 species, we demonstrate that geographical attributes of the species range, including total size, latitude and elevation, are the most important predictors of which species are likely to contain structured genetic variation. While latitude is well known as an important predictor of biodiversity, our work suggests that it also plays a key role in shaping diversity within species.


Molecular Ecology | 2018

A pheromone by any other gene would smell as sweet

Tara A. Pelletier; Robert Denton

Reproductive isolation is the result of either the inability to produce viable and fertile offspring or the avoidance of mating altogether. While these mechanisms can evolve either over time via genetic drift or natural selection, the genetic result is usually a complex set of traits that are often linked. Explaining how reproductive isolation proceeds from the initiation of divergence to the complete prevention of mating is often a difficult task, as the underlying genes for traits associated with reproductive isolation can change via molecular evolution and subsequent protein coding alterations or through alterations of gene expression regulation. In this issue of Molecular Ecology, Treer, Maex, VanBocxlaer, Proost, and Bossuyt ( ) use transcriptomic, proteomic and phylogenetic analyses to show that species‐specific sex pheromones are the result of gradual sequence divergence on the same set of proteins in two closely related newt species (Ichthyosaura alpestris and Lissotriton helveticus). This study shows that salamander pheromone systems provide an enticing opportunity to connect the evolution of reproductive isolation to the changes in genes that underlie a key phenotype.


Journal of Biogeography | 2016

Comparing range evolution in two western Plethodon salamanders: glacial refugia, competition, ecological niches, and spatial sorting

Tara A. Pelletier; Bryan C. Carstens


Archive | 2018

Supplementary material from "Geographical range size and latitude predict population genetic structure in a global survey"

Tara A. Pelletier; Bryan C. Carstens


Journal of Biogeography | 2018

A global analysis of bats using automated comparative phylogeography uncovers a surprising impact of Pleistocene glaciation

Bryan C. Carstens; Ariadna E. Morales; Kathryn Field; Tara A. Pelletier

Collaboration


Dive into the Tara A. Pelletier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Noah M. Reid

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charlie Crisafulli

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeremy M. Brown

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

John D. McVay

Louisiana State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge